Slick Sheet: Project
The University of Rochester Laboratory for Laser Energetics ($1.75M) and the Naval Research Laboratory (NRL) ($1.75M) will advance inertial fusion energy (IFE) by developing (1) innovative direct-drive, high-bandwidth, high-gain target designs using high-bandwidth laser technologies with < 1 MJ of laser input energy, and (2) high-efficiency, high-bandwidth IFE drivers to eventually enable experimental demonstration of the advanced target designs.

Slick Sheet: Project
GE Global Research and Glosten will design a new FOWT based on the 12 MW (megawatt) Haliade-X rotor and a lightweight three-legged acutated tension-leg platform. Applying a CCD methodology, the team will use advanced control algorithms to operate the turbine and concurrently design the integrated structure of the FOWT. The proposed turbine designs will have the potential to reduce the mass of the system by more than 35% compared with installed FOWT designs.

Slick Sheet: Project
Sandia National Laboratories will design a vertical-axis wind turbine (VAWT) system, ARCUS, with the goal of eliminating mass and associated cost not directly involved in capturing energy from the wind. A VAWT is ideal for floating offshore sites. Its advantages over horizontal-axis wind turbines (HAWTs) include no need of yaw systems, improved aerodynamic efficiency and a lower level placement of the turbine’s drivetrain that greatly reduces floating platform mass and associated system costs. The ARCUS design also replaces the turbine’s VAWT tower with lighter, tensioned guy wires.

Slick Sheet: Project
The National Renewable Energy Laboratory (NREL) will develop a Wind Energy with Integrated Servo control (WEIS) model, a tool set that will enable CCD optimization of both conventional and innovative, cost-effective FOWTs. NREL’s WEIS model will be entirely open-source and publicly accessible, bringing together many components and disciplines into a concurrent design environment.

Slick Sheet: Project
The University of Maine (UMaine) team will design an ultra-lightweight, corrosion-resistant, concrete FOWT equipped with NASA motion mitigation technology originally developed to reduce vibrations in rockets. UMaine proposes this technology to counteract FOWT motions, leading to lighter platforms, increased turbine performance, and a lower levelized cost of electricity (LCOE). The project will take a radical next step in the field of floating offshore wind while building upon UMaine’s 12 years of experience in successfully designing and deploying the first grid-connected FOWT in the U.S.

Slick Sheet: Project
WS Atkins will focus on generating experimental data that can be used to validate computer programs and new technologies developed for FOWT applications. The team will conduct experiments of 15-MW (megawatt) wind turbine scale models in world-class test facilities to assess the behavior of conventional and unconventional FOWT structures with advanced solutions. The WS Atkins team will make their data accessible to ATLANTIS project members and the public to facilitate benchmarking of new designs, accurate calibration of computer tools, and a FOWT database for future research.

Slick Sheet: Project
The University of Central Florida will develop a comprehensive causality-free modeling and simulation platform that facilitates CCD, assists in incorporating multi-physics models, adapts to design changes, and allows rapid simulations to validate models and evaluate controllers for FOWTs. The team will study unique control concepts such as active tether actuation, gyroscopic balancing, hydraulic actuation, and individual pitch control.

Slick Sheet: Project
A multidisciplinary team including Rutgers University, University of Michigan, Brigham Young University, National Renewable Energy Laboratory, and international collaborators (Norwegian University of Science and Technology and Technical University of Denmark) will develop a computationally efficient CCD optimization software framework for floating offshore wind turbine design. They will focus on developing a modular computational framework for the modeling, optimization, and control of primary structures coupled to the surrounding air, water, and actuator dynamics.

Slick Sheet: Project
The National Renewable Energy Laboratory (NREL) will design an innovative floating offshore platform (SpiderFLOAT) to unlock the offshore wind market by lowering the cost of energy below the current value of fixed-bottom offshore wind plants. The project uses a revolutionary substructure based on a bioinspired, ultra-compliant, modular, and scalable concept and advanced control system. The team will complete preliminary design of a 10-MW unit by using CCD optimization techniques and advance the commercialization of the floating offshore wind technology.

Slick Sheet: Project
The University of Texas at Dallas (UT-Dallas) team plans to develop a floating turbine design featuring a vertical axis wind turbine (VAWT). The design will exploit inherent VAWT characteristics favorable to deep water environments and use a CCD approach to overcome common challenges.