Slick Sheet: Project
Stoicheia aims to accelerate the discovery of proton exchange membrane electrolyzer (PEM) anode catalysts to reduce or eliminate the rare, expensive iridium oxide (IrOx) that is currently the industry standard. Stoicheia’s novel combinatorial process and Megalibrary platform enables the rapid synthesis and characterization of hundreds of thousands of unique materials in a single experiment. Stoicheia seeks to use this approach to accelerate the discovery of reduced IrOX options.

Slick Sheet: Project
Cornell University seeks to develop a breakthrough wireless charging system for stationary and dynamic charging of EVs that will drastically reduce the need for expensive and bulky on-board batteries, enable unlimited range, accelerate EV penetration, and reduce U.S. energy consumption. The new system will leverage charging range extension, field focusing, and machine learning-based optimization to (1) reduce interference from fringing fields by 10x, (2) increase energy transfer by 10x, and (3) reduce power pulsations by 10x compared with state-of-the-art solutions.

Slick Sheet: Project
pH Matter will use electrochemical compression within an electrolysis stack and contained in a Type V vessel to eliminate or reduce the amount of additional mechanical compression required to make high-pressure hydrogen (200-700 bar). Historically, mechanical stability, hydrogen crossover, or diffusion problems made such an approach very challenging. In addition to the Type V vessel, pH Matter will utilize their patented, hybrid liquid alkaline-anion exchange membrane electrolysis cell that has 30x less crossover than a state-of-the-art proton exchange membrane electrolyzer.

Slick Sheet: Project
Enegis will use Ambient Seismic Imaging (ASI) to image permeability pathways and fluid flow in rock to advance geothermal development. Proper geothermal resource development must ensure project feasibility and integrity, improve targeting of permeability structures, and control induced seismicity. ASI overcomes the need for a controlled signal source (e.g., vibroseis) by using seismic emission tomography methods and passively listens to vibrations due to stress changes by fluid-rock interactions during the creation of permeability pathways.

Slick Sheet: Project
Artimus Robotics aims to enable environmentally conscious deep-sea mining of rare earth elements and precious metals using next-generation bio-inspired unmanned underwater vehicles (UUVs). The team will focus on developing inexpensive electronics for its hydraulically amplified self-healing electrostatic (HASEL) actuators, which enable ‘soft’ autonomous vehicles that can facilitate environmentally conscious mineral collection methods to access the deep ocean. More than 50% of the total UUV cost is attributed to the motors and associated drive systems.

Slick Sheet: Project
The University of Tennessee, Knoxville (UT) will develop a high-temperature, chemically resistant, diamond-based microfluidic alpha spectrometer (DiMAS) that will enable accurate online and/or at-line (the sample is removed and analyzed near the production process) measurement of alpha-emitting isotopes in LF-MSR fuel. The team will develop an optimal spectrometer design by using experimental and computational methods to evaluate the sensor architecture, packaging, and performance.

Slick Sheet: Project
Leakage from SF6-insulated circuit breakers and power equipment has been raising environmental concerns due to the high GWP of SF6. Georgia Tech proposes TESLA, an SF6-free high-voltage circuit breaker. Recent breakthroughs in the dielectric properties of supercritical fluid research show the promise of using it as a dielectric and arc-quenching medium for high-voltage AC circuit breakers instead of SF6. TESLA opens possibilities for an SF6-free electric apparatus.

Slick Sheet: Project
The Massachusetts Institute of Technology (MIT) aims to develop a complete system to remove low-level methane from high-flow gaseous streams associated with coal mining. Because state-of-the-art mine ventilation air systems offer zero methane conversion, the system will be developed and tested on ventilation air methane. MIT’s design will include real-time input determination, output performance sensing, advanced machine learning algorithms, and feedback control for process optimization.

Slick Sheet: Project
Texas Engineering Experiment Station (TEES) seeks to reduce methane emissions from compressor station natural gas (NG) engines by improving lean-burn operation, thereby reducing exhaust methane and carbon dioxide (CO2) emissions and maintaining low-criteria pollutant emissions. The project team will develop a nanosecond non-thermal plasma-based ignition system capable of generating radicals, ions, and highly reactive intermediate species that result in rapid self-sustaining combustion, and a cyclic combustion control strategy that predicts and mitigates partial-fire and misfire cycles.

Slick Sheet: Project
Johnson Matthey, Oak Ridge National Laboratory, and Consol Energy will adapt the Catalytic Oxidation METhane (COMET™) methane abatement system to convert vent air methane at a Consol Energy coal mining site. The COMET methane system has shown potential for controlling dilute methane emissions. The team will use cost-effective technology to achieve over 99.5% methane conversion efficiency at temperatures below 1112 ºF for methane concentration in the range of 0.1-1.6%, representing nearly all ventilation air methane sources in the U.S.