Slick Sheet: Program

Slick Sheet: Program

Slick Sheet: Program

Slick Sheet: Program

Slick Sheet: Program

Slick Sheet: Project
Foundation Alloy Technology Explorations will develop a new class of alloys specifically engineered for powder metallurgy-based processing. These new alloys would be engineered at the atomic level for improved properties and for potential applications in critical reactor components. Foundation Alloy’s integration of new material design with part production could enable rapid delivery times, lower costs, and more consistent part quality.

Slick Sheet: Project
NK Labs will improve the efficiency of muon production to enable cost-effective muon-catalyzed fusion, a process that can operate at much lower temperatures than traditional approaches to fusion. NK Labs would improve the design of the target that gets bombarded with high-energy protons to generate particles called pions, which rapidly decay into muons that are then routed toward the fusion fuel to catalyze a fusion reaction.

Slick Sheet: Project
Deep Isolation will test a range of canister designs in boreholes at the Deep Borehole Demonstration Center in Texas and assess US-based supplier capabilities in the hopes of identifying a universal canister design. Advancing a universal canister system from a conceptual development stage to a licensing stage would require full-scale test data, and help enable safe, scalable, and cost-effective disposal of the current stored used nuclear fuel as well as fuels from advanced nuclear reactors in development.

Slick Sheet: Project
Perseus Materials will develop a new mode of composite manufacturing for wind turbine blades that could rapidly replace vacuum-assisted resin transfer molding as the dominant blade manufacturing process. Perseus’s unique additive manufacturing method—known as variable cross-sectional molding—could significantly reduce labor costs, cycle times, and factory footprints for blade manufacturers at the same output levels.

Slick Sheet: Project
GaNify will develop a unique power switch for gyrotron modulators in nuclear fusion systems that could switch 50-kV/1-A in less than a microsecond without the need to stack multiple switches in series. Their design would significantly reduce the complexity and shorten the modulation voltage rise time, effectively pushing the voltage limit of solid-state power switches toward the high voltage regime.