Slick Sheet: Project
Orano Federal Services will develop an off-gas treatment unit that can be modified to align with the off-gases produced from the upstream AR fuel processing system. Orano will design “plug and play” treatment units that can be connected to the off-gas exhausts from: (1) a pyro-processing recycling plant treating AR UNF; (2) a plant designed to condition AR UNF in preparation for disposal; and (3) a molten salt reactor with in-line processing of its liquid fuel. This same off-gas treatment concept could also be applied on a recycling plant using an aqueous separations process.

Slick Sheet: Project
The University of Alabama at Birmingham (UAB) will research a single-step technology to recycle UNF by recovering the bulk of uranium (U) and other transuranics (TRU) from fission products. After dissolution of UNF in nitric acid, U/TRU is simultaneously separated from fission products by co-crystallizing oxidized TRU with uranyl nitrate hexahydrate. The approach is inherently proliferation resistant, as plutonium-only streams cannot be achieved without implementing additional technologies.

Slick Sheet: Project
CurioTM will research the advanced head-end processing and fluorination steps of its UNF recycling process, NuCycleTM, at the laboratory scale to derisk the NuCycle process. NuCycle is a modular, integrated, compact, and proliferation-hardened process designed to avoid production of pure plutonium (Pu) streams and dramatically reduce waste volumes compared with existing processes. NuCycle significantly reduces facility footprints, leverages well-understood chemical processes, and accommodates a variety of fuel types, including molten salts and nitride fuels.

Slick Sheet: Project
Argonne National Laboratory (ANL) will develop, produce, and test rotating packed bed contactors designed from the ground up for UNF reprocessing. The proposed PAcked Centrifugal Equipment for Radiochemical separations, PACERs, applies a centrifugal field to increase the efficiency of separations in packed beds and decrease the required packing volumes by more than 50% compared with state-of-the-art columns.

Slick Sheet: Project
The University of Colorado, Boulder (CU-Boulder), will advance high-resolution gamma-ray spectroscopy using cryogenic microcalorimeter arrays, which are an emerging tool for improved nuclear material accountancy. Microcalorimeter spectrometers measure gamma-ray energy much more precisely than other gamma-ray detectors, allowing them to resolve closely spaced gamma-ray lines such as those produced by plutonium isotopes near 100 keV, and detect lines that appear only weakly above background.

Slick Sheet: Project
The Makai Ocean Engineering team will develop novel mooring and anchoring methods to reduce the costs of offshore renewable energy. Makai will enable grid-scale FOWT and MHK systems to be deployed in areas that would otherwise be inaccessible or too expensive with current mooring and anchoring technologies. At the center of this program is Makai’s Remote Anchoring and MicroPiling (RAMP) system, which can remotely install micropiles on the seafloor.

Slick Sheet: Project
The University of Michigan and Southwest Research Institute will use state-of-the-art methods to eliminate methane emissions from oil and gas (O&G) flares, vents, and other equipment. The approach will quantitatively characterize high- and low-volume methane sources at an actual O&G field site and demonstrate Systems of Advanced Burners for Reduction of Emissions (SABRE) technology for high-efficiency (> 99.5%) methane conversion of the high- and low-volume sources of methane. The SABRE approach leverages site resources and customizes flare technology to local equipment needs.

Slick Sheet: Project
Texas Tech will develop boron nitride (BN) fast neutron detectors (FND) for energies up to tens of mega-electron volts based on their recent development of hexagonal BN semiconductor thermal neutron detectors with record efficiencies of >59%. BN FNDs have unique advantages, including compact size, high gamma rejection ratio, low voltage operation, and low fabrication and maintenance costs. These neutron detectors can operate in high temperatures and harsh environments and detect thermal and fast neutrons simultaneously.

Slick Sheet: Project
Fervo Energy has developed proprietary geothermal technology—FervoFlex™—capable of delivering in-reservoir energy storage and dispatchable generation attributes. At the same time, the team will develop a fiber optics-based diagnostic platform to monitor and optimize dynamic subsurface processes that currently pose major barriers to flexibly operating geothermal facilities. Fervo’s horizontal well design connects subsurface wells with a set of hydraulically conductive fractures surrounded by impermeable rock.

Slick Sheet: Project
Polymath Research will enable the use of longer-wavelength lasers for IFE. This project seeks to control LPI using pulses composed of Spike Trains of Uneven duration and Delay (STUD), a sequence of precisely timed laser pulses designed to disrupt LPI growth and memory build up in the plasma due to persistent self-organization of the plasma undergoing continuous and undisrupted laser energy deposition.