Slick Sheet: Project
Pacific Northwest National Laboratory (PNNL) is developing innovative high-performance-computing techniques that can assess unused power transmission capacity in real-time in order to better manage congestion in the power grid. This type of assessment is traditionally performed off-line every season or every year using only conservative, worst-case scenarios.

Slick Sheet: Project
RamGoss is using innovative device designs and high-performance materials to develop utility-scale electronic switches that would significantly outperform today’s state-of-the-art devices. Switches are the fundamental building blocks of electronic devices, controlling the electrical energy that flows around an electrical circuit. Today’s best electronic switches for large power applications are bulky and inefficient, which leads to higher cost and wasted power. RamGoss is optimizing new, low-cost materials and developing a new, completely different switch designs.

Slick Sheet: Project
The University of Minnesota (UMN) will develop a comprehensive approach that addresses the challenges to system reliability and power quality presented by widespread renewable power generation. By developing techniques for both centralized cloud-based and distributed peer-to-peer networks, the proposed system will enable coordinated response of many local units to adjust consumption and generation of energy, satisfy physical constraints, and provide ancillary services requested by a grid operator.

Slick Sheet: Project
The University of California, San Diego (UC San Diego) will develop coordination algorithms and software using intelligent control and optimization for flexible load and DERs to provide reliable frequency regulation services for the bulk power grid. The project will develop a multi-layer framework for larger-scale energy aggregators to act on behalf of their smaller-sized customers to help respond to incoming requests from regional transmission operators.

Slick Sheet: Project
Stanford University will develop Powernet, an open-source and open architecture platform for scalable and secure coordination of consumer flexible load and DERs. Powernet will be based on the principle of connecting information networks to the power network (connecting bits and watts). It uses a layered architecture that enables real-time coordination of centralized resources with millions of DERs by integrating embedded sensing and computing, power electronics, and networking with cloud computing.

Slick Sheet: Project
Pacific Northwest National Laboratory (PNNL) will develop and test a hierarchical control framework for coordinating the flexibility of a full range of DERs, including flexible building loads, to supply reserves to the electric power grid. The hierarchical control framework consists of incentive-based control strategies across multiple time-scales. The system will use a slower incentive-based approach to acquire flexible assets that provide services, combined with faster device-level controls that use minimal communication to provide desired responses to the grid.

Slick Sheet: Project
Northwestern University and its partners will develop a frequency-based load control architecture to provide additional frequency response capability and allow increased renewable generation on the grid. The work will focus on developing and demonstrating algorithms that adapt to rapid changes of loads, generation, and system configuration while taking into account various constraints arising from the transmission and distribution networks.

Slick Sheet: Project
The University of Vermont (UVM) will develop and test a new approach for demand-side management called packetized energy management (PEM) that builds on approaches used to manage data packets in communication networks without centralized control and with a high level of privacy. The PEM system will allow millions of small end-use devices to cooperatively balance energy supply and demand in real time without jeopardizing the reliability of the grid or the quality of service to consumers.

Slick Sheet: Project
The National Renewable Energy Laboratory (NREL) lead team will develop a comprehensive distribution network management framework that unifies real-time voltage and frequency control at the home/DER controllers’ level with network-wide energy management at the utility/aggregator level. The distributed control architecture will continuously steer operating points of DERs toward optimal solutions of pertinent optimization problems, while dynamically procuring and dispatching synthetic reserves based on current system state and forecasts of ambient and load conditions.

Slick Sheet: Project
The National Rural Electric Cooperative Association (NRECA) will develop GridBallast, a low-cost demand-side management technology, to address resiliency and stability concerns accompanying the exponential growth in DERs deployment in the U.S. electric grid. Specifically, devices based on GridBallast technology will monitor grid voltage and frequency and control the target load in order to address excursions from grid operating targets. The devices will operate autonomously to provide rapid local response, removing the need for costly infrastructure to communicate with a central controller.