Blog Posts
The U.S. electric grid has limited ability to store excess energy, so electricity must constantly be over-generated to assure reliable supply. Advanced energy storage promises to play a key role in modernizing the nation’s electricity grid to enable the integration of increasing amounts of renewables, improve operating capabilities, enhance reliability, allow deferral of infrastructure investments and provide backup power during emergencies. The Primus Power and City University of New York Energy Institute (CUNY-EI) teams developed unique approaches to turning battery storage ideas into reality.

Blog Posts
Long-duration electricity storage (LDES) – storage systems that can discharge for 10 hours or more at their rated power – have recently gained a lot of attention and continue to be a technology space of interest in energy innovation discussions. The increased interest stems from a growing appreciation and acknowledgement of the need for “firm” low-carbon energy resources to complement variable renewable generators like wind and solar, and ARPA-E is actively working to increase storage capacity to help fill this need. 

Blog Posts
ARPA-E focuses on next-generation energy innovation to create a sustainable energy future. The agency provides R&D support to businesses, universities, and national labs to develop technologies that could fundamentally change the way we get, use, and store energy. Since 2009, ARPA-E has provided approximately $2 billion in support to more than 800 energy technology projects. In January, we introduced a new series to highlight the transformational technology our project teams are developing across the energy portfolio. Check out these projects turning ideas into reality.

Blog Posts
ARPA-E focuses on next-generation energy innovations that will help create a sustainable energy future. The agency provides R&D funding for technologies that could fundamentally change the way we get, use, and store energy. Since 2009, ARPA-E has provided approximately $2 billion in R&D funding for more than 800 energy technology projects.

Slick Sheet: Project
Colorado State University and its partners—ION Clean Energy, Worcester Polytechnic Institute, and Bright Generation Holdings—will develop a thermal energy storage system with flexible advanced solvent carbon capture technology. The system aims to decrease the levelized cost of electricity for natural gas-fired combined cycle (NGCC) power plants to <75 $/MWh while simultaneously capturing >95% of CO2 emissions when operating in highly VRE penetration markets. The team's approach uses a novel and low-cost heat-pump thermal storage system.

Blog Posts
On September 3, 2020, battery producer QuantumScape announced its initial public offering (IPO) on the New York Stock Exchange through a reverse-merger with the special public acquisition company Kensington Capital Acquisition Corp. at an implied value of $3.3 billion. QuantumScape spun out of a project at Stanford University that was awarded $1.5 million to develop transportation battery technology under the Batteries for Electrical Storage in Transportation (BEEST) program.

Slick Sheet: Project
Noon will create a rechargeable battery that turns solar and wind electricity into on-demand power. The battery uses ultra-low-cost storage media and stores energy by splitting CO2 into solid carbon and oxygen. Noon’s technology could provide a low-cost storage option compared with existing batteries.

Slick Sheet: Project
Ammonia synthesis reactions, enabled by the Haber-Bosch process, account for approximately 3% of the world’s total energy use. HighT-Tech proposes a cascade reactor with a sequence of non- platinum group metals catalyst compositions tailored to a specific stage of the synthesis reaction. HighT-Tech’s novel, direct joule (electric current) heating process enables synthesizing high entropy alloy nanoparticles with various catalyst compositions.

Slick Sheet: Project
SiEnergy Systems is developing a hybrid electrochemical system that uses a multi-functional electrode to allow the cell to perform as both a fuel cell and a battery, a capability that does not exist today. A fuel cell can convert chemical energy stored in domestically abundant natural gas to electrical energy at high efficiency, but adoption of these technologies has been slow due to high cost and limited functionality. SiEnergy’s design would expand the functional capability of a fuel cell to two modes: fuel cell mode and battery mode.

Slick Sheet: Project
The University of South Carolina is developing an intermediate-temperature, ceramic-based fuel cell that will both generate and store electrical power with high efficiencies. Reducing operating temperatures for fuel cells is critical to enabling distributed power generation. The device will incorporate a newly discovered ceramic electrolyte and nanostructured electrodes that enable it to operate at temperatures lower than 500ºC, far below the temperatures associated with fuel cells for grid-scale power generation.