Slick Sheet: Project
To create energy storage that addresses Li-ion limitations, the project team has identified an unlikely source: inactive upstream oil and gas (O&G) wells. NREL will repurpose inactive O&G wells to create long-term, inexpensive energy storage. Team member Renewell Energy has invented a method of underground energy storage called Gravity Wells that will give a second life to ~$4 trillion worth of inactive upstream O&G infrastructure and result in the sealing of hundreds of thousands of idle O&G wells currently emitting methane.

Slick Sheet: Project
Low-cost H2 is the key to affordable long-term grid storage technologies that could work well with grid-scale battery storage to accommodate high penetration of wind and solar electricity generation in the next decades. The California Institute of Technology (Caltech) seeks to develop a hybrid electrochemical/catalytic approach for direct generation of high-pressure H2. Caltech’s proposed system has the potential to reach <$2/kg of H2 produced and compressed at 700 bar using renewable energy sources.

Slick Sheet: Project
Columbia University aims to modulate the cycling behavior of conventional Li-ion battery materials in a bobbin cell format. The team will optimize electrode compositions, properties, and dimensions with corresponding cell configurations using standard commodity Li-ion materials and established bobbin cell manufacturing techniques. These cells will be suitable for 4-hour charge, and cost profiles amenable to 8-to-16-hour discharge.

Slick Sheet: Project
Precision Combustion Inc. (PCI) will develop a process-intensified, multi-functional SOFC architecture that permits a power dense, lightweight design and fast start-up for transportation applications. PCI will combine advanced concepts, process intensification, and additive manufacturing to develop a cost-effective and readily manufacturable SOFC system. It is analogous to a scalable electrochemical chip.

Slick Sheet: Project
The RedoxBlox team will lead the engineering and development of a pilot-scale energy storage platform comprising a thermochemical energy storage module integrated with a gas turbine power generator. In addition, the team will conduct advanced materials and component-level investigations, including a comprehensive analysis of their core thermochemical energy storage material that enables this energy storage technology.

Slick Sheet: Project
Columbia University's Electrochemical Energy Center will develop a long-duration grid energy storage solution that leverages a new approach to the zinc bromine battery, a popular chemistry for flow batteries. Taking advantage of the way zinc and bromine behave in the cell, the battery will eliminate the need for a separator to keep the reactants apart when charged, as well as allow all the electrolyte to be stored in a single tank, instead of multiple cells. This reduction in “balance of plant” hardware will reduce system cost.

Slick Sheet: Project
Electrified Thermal Solutions is developing Firebrick Resistance-heated Energy Storage (FIRES), a new energy storage technology that converts surplus renewable electricity into heat. Once stored, the renewable heat can be used to (1) replace fossil fueled heat sources in industrial processes such as steel and cement production or (2) run a heat engine to produce carbon-free, on-demand renewable electricity at a fraction of the cost of Li-ion batteries. FIRES is based on a novel joule-heated system built from electrically conductive ceramics designed at MIT.

Slick Sheet: Project
Green hydrogen, which is produced with renewable energy and electrolysis, can reduce emissions for the ammonia fertilizer, refineries, chemicals, and steel industries that use hydrogen as a feedstock. Existing water electrolysis technologies are expensive due to high materials cost or complex balance-of-plant systems required when using conventional alkaline electrolysis. The ARPA-E IONICS program developed highly conductive, chemically stable anion exchange membranes that are now commercially produced.

Slick Sheet: Project
Colorado State University and its partners—ION Clean Energy, Worcester Polytechnic Institute, and Bright Generation Holdings—will develop a thermal energy storage system with flexible advanced solvent carbon capture technology. The system aims to decrease the levelized cost of electricity for natural gas-fired combined cycle (NGCC) power plants to <75 $/MWh while simultaneously capturing >95% of CO2 emissions when operating in highly VRE penetration markets. The team's approach uses a novel and low-cost heat-pump thermal storage system.

Blog Posts
On September 3, 2020, battery producer QuantumScape announced its initial public offering (IPO) on the New York Stock Exchange through a reverse-merger with the special public acquisition company Kensington Capital Acquisition Corp. at an implied value of $3.3 billion. QuantumScape spun out of a project at Stanford University that was awarded $1.5 million to develop transportation battery technology under the Batteries for Electrical Storage in Transportation (BEEST) program.