Blog Posts
ARPA-E focuses on next-generation energy innovation to create a sustainable energy future. The agency provides R&D support to businesses, universities, and national labs to develop technologies that could fundamentally change the way we get, use, and store energy. Since 2009, ARPA-E has provided approximately $2 billion in support to more than 800 energy technology projects. Last month, we introduced a new series to highlight the transformational technology our project teams are developing across the energy portfolio. Check out these projects turning ideas into reality.

Blog Posts
Every year, convention centers around the world fill with eager attendees looking for a chance to experience firsthand the latest and greatest in the world of automobile innovation. Whether you’re a classic gearhead or technology enthusiast, the auto manufacturers’ annual showcase season is truly a sight to behold. To celebrate car show season, here’s a quick look at some of ARPA-E’s transportation portfolio and a few projects that could one day shape how Americans get around. 

Slick Sheet: Project
Electric propulsion for air vehicles requires a high-power density and high-efficiency electric storage and power generation system that can operate at 35,000 feet in altitude to meet economic and environmental viability. Tennessee Technological University will combine a stack comprised of tubular Solid Oxide Fuel Cells (SOFCs) with a gas turbine combustor to address challenges faced in all electric propulsion-based aviation. The combined SOFC-combustor concept maximizes power density and efficiency while minimizing system complexity, weight, and cost.

Slick Sheet: Project
Small regional aircraft operations are challenged by high fuel cost, noise restrictions associated with small regional airports, and high maintenance cost of twin gas turbines. A battery/gas turbine hybrid series small regional aircraft, enabled by ULTRA COMPACT driven propulsors, addresses these issues, and could reduce passenger mile energy consumption.

Slick Sheet: Project
More information on this project is coming soon!

Slick Sheet: Project
The CO-POWER project will enable a commercial narrow body electric aircraft by developing an ultra-efficient and lightweight fuel to electricity power generation system that includes the use of supercritical carbon dioxide (sCO2) as a working fluid. The proposed approach combines decades of knowledge in gas turbine engines with novel advances in additive manufacturing research and sCO2 power generation experience to increase the overall power system efficiency and its power density.

Slick Sheet: Project
Precision Combustion (PCI) is proposing an advanced energy storage and power generator design for meeting aggressive specific power and energy targets for all-electric propulsion of narrow-body commercial aircraft. Key enablers are an exceptionally power-dense solid oxide fuel cell system operating with energy-dense carbon neutral liquid fuels and a hybridized system architecture that maximizes component efficiencies for ultra-high system efficiency. PCI will validate compliance via component demonstration and develop a verifiable model for scale-up.

Slick Sheet: Project
Fuceltech proposes to develop an innovative low-cost, lightweight Energy Storage and Power Generation (ESPG) system for commercial aircraft. Fuceltech will develop a monopolar wound single fuel cell potentially as high as 10 kW rating and a novel stacking approach to deliver hundreds of kWs of power from a single small and lightweight stack. Fuceltech will use ethanol as a fuel and a reformer that delivers extremely low CO concentration in the reformate to the fuel cell.

Slick Sheet: Project
The Zero-carbon Ammonia-Powered Turboelectric (ZAPTurbo) Propulsion System is a very high efficiency and lightweight turboelectric system that uses green ammonia as a fuel and coolant via regenerative cooling. Coke-free heating of this carbon-free ammonia fuel enables a high level of waste-heat recovery that will be used for the endothermic cracking of ammonia prior to its combustion, significantly increasing the cycle efficiency. The proposed propulsion system includes an efficient AC electric powertrain for turboelectric cruise, with battery boost for takeoff and climb flight phases.

Slick Sheet: Project
Colorado State University and its partners—ION Clean Energy, Worcester Polytechnic Institute, and Bright Generation Holdings—will develop a thermal energy storage system with flexible advanced solvent carbon capture technology. The system aims to decrease the levelized cost of electricity for natural gas-fired combined cycle (NGCC) power plants to <75 $/MWh while simultaneously capturing >95% of CO2 emissions when operating in highly VRE penetration markets. The team's approach uses a novel and low-cost heat-pump thermal storage system.