Slick Sheet: Project
Gencores enables technology for ultra-light vehicles to decarbonize transportation. Herein they demonstrate a scalable and digital production of low-cost and high-performance hybrid Polymethacrylimide (PMI) foam cores for sandwich composite constructions. Sandwich composites feature a foam core wrapped in fiber-reinforced skins and offer a 40-75% weight reduction potential compared with traditional metal alternatives. Current PMI foam cores are costly and time-consuming to produce in complex shapes.

Slick Sheet: Project
The University of California, Berkeley (UC Berkeley) will develop ultra-light-weight and efficient DC-DC power converters for electric aircraft. The team will drive power density and efficiency through innovation in the electrical and thermal domains and will apply sophisticated modeling and digital control to achieve system-level scalability, reliability, and fault-detection. If successful, this project will propel a disruptive change in electric aircraft propulsion systems, enabling low-cost, high-efficiency, and highly reliable electric flight DC power conversion and distribution. .

Slick Sheet: Project
The freight rail industry faces pressure to reduce its greenhouse emissions. Currently there is no tool to rigorously identify realistic decarbonization pathways. NC State will quantify the potential of battery-electric, hybrid, and hydrogen-fuel motive power to achieve deep decarbonization over a 30-year planning horizon. The team will develop the Achieving Sustainable Train Energy Pathways (A-STEP) open-source software tool to account for train dynamics, propulsion, energy storage, multi-train interactions, energy delivery, and storage infrastructure.

Slick Sheet: Project
This project will develop a unique, fully integrated, Python-based open-source software tool to evaluate strategies for deploying advanced locomotive technologies and associated infrastructure for cost-effective decarbonization. ALTRIOS will simulate energy conversion and storage dynamics, locomotive and train dynamics, meet-pass planning (detailed train timetabling), and freight-demand-driven train scheduling in a Pareto optimization.

Slick Sheet: Project
The Penn State team is developing a fully open-source toolset for exploring and optimizing Energy Storage and Power (ES&P) systems for rail transportation. The core of the toolset will be an Energy-Longitudinal Train Dynamics (E-LTD) model that represents the train as a complex rolling micro-grid of power sources and sinks, determining the optimal power flow policy for each. The E-LTD will model power demands and calculate greenhouse gas (GHG) emissions and fuel consumption, power, acquisition, operations and support, and infrastructure costs.

Slick Sheet: Project
Advanced Conductor Technologies will develop two-pole, high-temperature, superconducting DC power cables and connectors with a power rating of up to 50 MW to enable twin-aisle aircraft with distributed electric propulsion to reduce carbon emissions. The cables and connectors will contain insulation independent of the cryogenic medium used as coolant and allow an operating voltage of 10 kV. Because they have intrinsic fault current limiting capabilities, the cables can protect the power distribution network from over-currents.

Slick Sheet: Project
New propulsion and energy storage (ES) systems technologies, as well as the charging/fueling infrastructure, must be developed to fully decarbonize U.S. rail freight greenhouse gas (GHG) emissions. Northwestern will develop and apply analysis, evaluation, and decision tools to assess the effectiveness of technologies and deployment strategies to significantly reduce GHG emissions from the rail freight sector.

Slick Sheet: Project
To make the power density of electric aircraft closer to conventional aircraft, an electric power system (EPS) with high power delivery and low system mass is necessary. As an essential component of aircraft EPS, cables are necessary to transmit power from one node to another. Virginia Tech will develop a high-power density, cost-effective ±5 kV cable for twin-aisle all-electric aircraft.

Slick Sheet: Project
GE Research will develop a safe, lightweight, and altitude-capable megawatt power cable system with electromagnetic interference shielding capability for large aircraft. The proposed 10 MW cable system is expected to achieve ten times greater power density than conventional technology without degradation by partial discharge and is fire safe and oil resistant.

Slick Sheet: Project
There are two key engineering challenges in the development of 10 kV, 10 MW electric power distribution cables for double-aisle passenger aircraft. One is providing sufficient electrical insulation at high voltages and the second is transferring heat away from the conductors.