Blog Posts
ARPA-E focuses on next-generation energy innovation to create a sustainable energy future. The agency provides R&D support to businesses, universities, and national labs to develop technologies that could fundamentally change the way we access, use, and store energy. Since 2009, ARPA-E has provided over $2 billion in support to more than 950 energy technology projects.

Slick Sheet: Project
Supercool Metals, LLC will explore manufacturing processes for high-strength, light-weight structural metal parts to enable more energy-efficient transportation. Lightweighting is a necessity for the automotive and aerospace industries, and increasingly important for the transition to hybrid and fully electric vehicles. Bulk metallic glasses (BMGs), which will be investigated in this project, are complex, light-weight alloys with significantly higher mechanical properties (e.g., strength, toughness, corrosion resistance) than conventional alloys.

Slick Sheet: Project
The University of Maryland will further develop its “super wood” approach to replace steel in the automotive industry. Replacing cast iron and traditional steel components with lightweight materials, such as magnesium and aluminum alloys, and polymer composites can directly reduce a vehicle's body weight by up to 50%, and consequently its fuel consumption. But most of these materials either have a high cost or performance issues. Super wood is a composite of cellulose nanofibers, which are stronger than most metals and composites.

Slick Sheet: Project
Rice University will develop a process to produce low-cost hydrogen at scale and recyclable, lightweight materials to replace metals in automotive applications. The team will convert NG into carbon nanotubes with concurrent production of H2, spin the nanotubes into fibers, and evaluate the fiber properties with the target of displacing metals. The proposed technology could significantly reduce energy consumption and CO2 emissions associated with both H2 and metal production at scale.

Slick Sheet: Project
Vorbeck Materials is developing a low-cost, fast-charging storage battery for hybrid vehicles. The battery cells are based on lithium-sulfur (Li-S) chemistries, which have a greater energy density compared to today’s Li-Ion batteries. Vorbeck’s approach involves developing a Li-S battery with radically different design for both cathode and anode. The technology has the potential to capture more energy, increasing the efficiency of hybrid vehicles by up to 20% while reducing cost and greenhouse gas emissions.

Slick Sheet: Project
The University of California, Riverside (UC Riverside) team will design, develop, and test an innovative vehicle-powertrain eco-operation system for natural-gas-fueled plug-in hybrid electric buses. This system will use emerging connected and automated vehicle applications like predictive approach and departure at traffic signals, efficient adaptive cruise, and optimized stopping and accelerating from stop signs and bus stops.

Slick Sheet: Project
The University of California, Berkeley (UC Berkeley) team has developed an innovative vehicle dynamics and powertrain (VD&PT) control architecture based on a predictive and data-driven approach. In the NEXTCAR program, UC Berkeley optimized the performance of a plug-in hybrid electric vehicle (PHEV) in real-world conditions, improving efficiency up to 30% in urban driving and 14% on the highway.

Slick Sheet: Project
Purdue University will develop an integrated, connected vehicle control system for diesel-powered Class 8 trucks. Improvements from this system are expected to achieve 20% fuel consumption reduction relative to a 2016 baseline Peterbilt Class 8 truck. Class 8 trucks are large (over 33,000 lbs) vehicles such as trucks and tractor-trailer combinations like 18-wheelers. While these large trucks represent only 4% of all on-road vehicles in the U.S., they are responsible for almost 22% of global on-road fuel consumption.

Slick Sheet: Project
Pennsylvania State University (Penn State) will develop a predictive control system that will use vehicle connectivity to reduce fuel consumption for a heavy duty diesel vehicle by at least 20% without compromising emissions, drivability, mobility, or safety. The technology will work to achieve four individual and complementary goals that co-optimize vehicle dynamic and powertrain control. First, it will exploit connected communication to anticipate traffic/congestion patterns on different roads, traffic light timing, and the speed trajectories of surrounding vehicles.

Slick Sheet: Project
The Ohio State University will develop and demonstrate a transformational powertrain control technology that uses vehicle connectivity and automated driving capabilities to enhance the energy consumption of a light duty passenger vehicle up-fitted with a mild hybrid system. At the core of the proposed powertrain control technology, is the use of a novel cylinder deactivation strategy called Dynamic Skip Fire which makes instantaneous decisions about which engine cylinders are fired or skipped thus significantly improving vehicle energy efficiency.