Slick Sheet: Project
Carnegie Mellon University (CMU) will develop novel electrochemical interfaces based on functionalized mixed conductors (FMCs) that produce transformative improvements in polymer electrolyte membrane fuel cell (PEMFC) technology by eliminating the ionomer from the electrode. In addition, new ORR catalysts will be developed to take advantage of the FMCs and reduce the platinum content used in fuel cells.

Slick Sheet: Project
Precision Combustion Inc. (PCI) will develop a process-intensified, multi-functional SOFC architecture that permits a power dense, lightweight design and fast start-up for transportation applications. PCI will combine advanced concepts, process intensification, and additive manufacturing to develop a cost-effective and readily manufacturable SOFC system. It is analogous to a scalable electrochemical chip.

Slick Sheet: Project
West Virginia University seeks to commercialize alloys and manufacturing processes to improve the overall safety, energy efficiency, and environmental performance of air travel and electricity generation. The team will develop a new class of ultra-high temperature refractory complex concentrated alloys-based composites (RCCC) for high temperature applications such as combustion turbines used in the aerospace and energy industries. The approach is based on a transformative “high-entropy” strategy.

Slick Sheet: Project
QuesTek Innovations will apply computational materials design, additive manufacturing (AM), coating technology, and turbine design/manufacturing to develop a comprehensive solution for a next-generation turbine blade alloy and coating system capable of sustained operation at 1300°C.

Slick Sheet: Project
Electric propulsion for air vehicles requires a high-power density and high-efficiency electric storage and power generation system that can operate at 35,000 feet in altitude to meet economic and environmental viability. Tennessee Technological University will combine a stack comprised of tubular Solid Oxide Fuel Cells (SOFCs) with a gas turbine combustor to address challenges faced in all electric propulsion-based aviation. The combined SOFC-combustor concept maximizes power density and efficiency while minimizing system complexity, weight, and cost.

Slick Sheet: Project
Small regional aircraft operations are challenged by high fuel cost, noise restrictions associated with small regional airports, and high maintenance cost of twin gas turbines. A battery/gas turbine hybrid series small regional aircraft, enabled by ULTRA COMPACT driven propulsors, addresses these issues, and could reduce passenger mile energy consumption.

Slick Sheet: Project
Raytheon Technologies Research Center, with the University of Tennessee, Hyper Tech Research Inc., the Ohio State University, and Pacific Northwest National Labs will develop a novel 2.5 MW, 5000 rpm Superconducting mOtor And cRyo-cooled Inverter eNGine (SOARING) for aircraft electric propulsion that can achieve greater than 93% efficiency and 12.5 kW/kg power. State-of-the-art cryocoolers are inefficient and heavy, making them impractical to carry on the plane.

Slick Sheet: Project
The CO-POWER project will enable a commercial narrow body electric aircraft by developing an ultra-efficient and lightweight fuel to electricity power generation system that includes the use of supercritical carbon dioxide (sCO2) as a working fluid. The proposed approach combines decades of knowledge in gas turbine engines with novel advances in additive manufacturing research and sCO2 power generation experience to increase the overall power system efficiency and its power density.

Slick Sheet: Project
Precision Combustion (PCI) is proposing an advanced energy storage and power generator design for meeting aggressive specific power and energy targets for all-electric propulsion of narrow-body commercial aircraft. Key enablers are an exceptionally power-dense solid oxide fuel cell system operating with energy-dense carbon neutral liquid fuels and a hybridized system architecture that maximizes component efficiencies for ultra-high system efficiency. PCI will validate compliance via component demonstration and develop a verifiable model for scale-up.

Slick Sheet: Project
Fuceltech proposes to develop an innovative low-cost, lightweight Energy Storage and Power Generation (ESPG) system for commercial aircraft. Fuceltech will develop a monopolar wound single fuel cell potentially as high as 10 kW rating and a novel stacking approach to deliver hundreds of kWs of power from a single small and lightweight stack. Fuceltech will use ethanol as a fuel and a reformer that delivers extremely low CO concentration in the reformate to the fuel cell.