Blog Posts
As Dr. Atkinson’s term as an ARPA-E Program Director comes to a close, we sat down with him to reflect on his ARPA-E experience, the NEXTCAR program and the future of powertrain technologies, and what’s next for him.

Slick Sheet: Program

Slick Sheet: Project
Sheetak is developing a thermoelectric-based solid state cooling system that is more efficient, more reliable, and more affordable than today’s best systems. Many air conditioners are based on vapor compression, in which a liquid refrigerant circulates within the air conditioner, absorbs heat, and then pumps it out into the external environment. Sheetak’s system, by contrast, relies on an electrical current passing through the junction of two different conducting materials to change temperature.

Slick Sheet: Project
ADMA Products is developing a foil-like membrane for air conditioners that efficiently removes moisture from humid air. ADMA Products' metal foil-like membrane consists of a paper-thin, porous metal sheet coated with a layer of water-loving molecules. This new membrane allows water vapor to permeate across the membrane at high fluxes, at the same time blocking air penetration and resulting in high selectivity. The high selectivity of the membrane translates to less energy use, while the high permeation fluxes result in a more compact device.

Slick Sheet: Project
Pacific Northwest National Laboratory (PNNL) is designing more efficient adsorption chillers by incorporating significant improvements in materials that adsorb liquids or gases. An adsorption chiller is a type of air conditioner that is powered by heat, solar or waste heat, or combustion of natural gas. Unlike typical chillers, an adsorption chiller has few moving parts and uses almost no electricity to operate.

Slick Sheet: Project
Dais Analytic Corporation is developing a product called NanoAir which dehumidifies the air entering a building to make air conditioning more energy efficient. The system uses a polymer membrane that allows moisture but not air to pass through it. A vacuum behind the membrane pulls water vapor from the air, and a second set of membranes releases the water vapor outside. The membrane's high selectivity translates into reduced energy consumption for dehumidification. Dais' design goals for NanoAir are the use of proprietary materials and processes and industry-standard installation techniques.

Slick Sheet: Project
American Superconductor (AMSC) is developing a freezer that does not rely on harmful refrigerants and is more energy efficient than conventional systems. Many freezers are based on vapor compression, in which a liquid refrigerant circulates within the freezer, absorbs heat, and then pumps it out into the external environment. Unfortunately, these systems can be expensive and inefficient. ITC's freezer uses helium gas as its refrigerant, representing a safe, affordable, and environmentally friendly approach to cooling.

Slick Sheet: Project
Material Methods is developing a heat pump technology that substitutes the use of sound waves and an environmentally benign refrigerant for synthetic refrigerants found in conventional heat pumps. Called a thermoacoustic heat pump, the technology is based on the fact that the pressure oscillations in a sound wave result in temperature changes. Areas of higher pressure raise temperatures and areas of low pressure decrease temperatures. By carefully arranging a series of heat exchangers in a sound field, the heat pump is able to isolate the hot and cold regions of the sound waves.

Slick Sheet: Project
Battelle Memorial Institute is developing a new air conditioning system that uses a cascade reverse osmosis-based absorption cycle. Analyses show that this new cycle can be as much as 60% more efficient than vapor compression, which is used in 90% of air conditioners. Traditional vapor-compression systems use polluting liquids for a cooling effect. Absorption cycles use benign refrigerants such as water, which is absorbed in a salt solution and pumped as liquid—replacing compression of vapor.

Slick Sheet: Project
Pennsylvania State University (Penn State) is designing a freezer that substitutes the use of sound waves and environmentally benign refrigerant for synthetic refrigerants found in conventional freezers. Called a thermoacoustic chiller, the technology is based on the fact that the pressure oscillations in a sound wave result in temperature changes. Areas of higher pressure raise temperatures and areas of low pressure decrease temperatures. By carefully arranging a series of heat exchangers in a sound field, the chiller is able to isolate the hot and cold regions of the sound waves.