Blog Posts
ARPA-E focuses on next-generation energy innovation to create a sustainable energy future. The agency provides R&D support to businesses, universities, and national labs to develop technologies that could fundamentally change the way we get, use, and store energy. Since 2009, ARPA-E has provided approximately $2 billion in support to more than 800 energy technology projects. Last month, we introduced a new series to highlight the transformational technology our project teams are developing across the energy portfolio. Check out these projects turning ideas into reality.

Blog Posts
Critical minerals are resources essential for building our new energy future that face a high risk of supply chain disruption. Demand for critical minerals for the energy sector could grow as much as six times by 2040, according to the International Energy Agency. New technologies that secure a sustainable supply of critical minerals for the United States are key ingredients to accelerate the clean energy transition.

Blog Posts
UPDATED ON MARCH 13, 2024: On February 20, 2024, Niron Magnetics announced an additional $25 million in strategic funding for their proprietary Clean Earth Magnet™ technology in a round led by Samsung Ventures with participation from Allison Ventures and Magna.

Slick Sheet: Program

Slick Sheet: Project
The University of Minnesota (UMN) is developing an early stage prototype of an iron-nitride permanent magnet material for EVs and renewable power generators. This new material, comprised entirely of low-cost and abundant resources, has the potential to demonstrate the highest energy potential of any magnet to date. This project will provide the basis for an entirely new class of rare-earth-free magnets capable of generating power without costly and scarce rare earth materials.

Slick Sheet: Project
Argonne National Laboratory (ANL) is developing a cost-effective exchange-spring magnet to use in the electric motors of wind generators and EVs that uses no rare earth materials. This ANL exchange-spring magnet combines a hard magnetic outer shell with a soft magnetic inner core—coupling these together increases the performance (energy density and operating temperature). The hard and soft magnet composite particles would be created at the molecular level, followed by consolidation in a magnetic field.

Slick Sheet: Project
University of Texas at Dallas (UT Dallas) is developing a unique electric motor with the potential to efficiently power future classes of EVs and renewable power generators. Unlike many of today's best electric motors—which contain permanent magnets that use expensive, imported rare earths—UT Dallas' motor completely eliminates the use of rare earth materials. Additionally, the motor contains two stators. The stator is the stationary part of the motor that uses electromagnetism to help its rotor spin and generate power.

Slick Sheet: Project
Baldor Electric Company is developing a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike today's large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldor's motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques.

Slick Sheet: Project
Brookhaven National Laboratory is developing a low-cost superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive.

Slick Sheet: Project
QM Power is developing a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of today's EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Power's motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost.