Displaying 26 - 50 of 66

Status: Active
Release Date:
Project Count: 8

GRID DATA

Generating Realistic Information for the Development of Distribution and Transmission Algorithms

The Generating Realistic Information for the Development of Distribution and Transmission Algorithms (GRID DATA) program will fund the development of large-scale, realistic, validated, and open-access power system network models. These models will have the detail required to allow the successful development and testing of transformational power system optimization and control algorithms, including new Optimal Power Flow (OPF) algorithms. Project teams will take one of two tracks to develop models. The first option is to partner with a utility to collect and then anonymize real data as the…


Status: Alumni
Release Date:
Project Count: 16

GRIDS

Grid-Scale Rampable Intermittent Dispatchable Storage

The projects that comprise ARPA-E's GRIDS program, short for "Grid-Scale Rampable Intermittent Dispatchable Storage," are developing storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than $100 per kilowatt hour. Flexible, large-scale storage would create a stronger and more robust electric grid by enabling renewables to contribute to reliable power generation.


Status: Alumni
Release Date:
Project Count: 15

HEATS

High Energy Advanced Thermal Storage

The projects that make up ARPA-E's HEATS program, short for "High Energy Advanced Thermal Storage," seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of…


Status: Active
Release Date:
Project Count: 14

HITEMMP

High Intensity Thermal Exchange through Materials, and Manufacturing Processes

The projects that comprise ARPA-E’s HITEMMP (High Intensity Thermal Exchange through Materials and Manufacturing Processes) program will develop new approaches and technologies for the design and manufacture of high temperature, high pressure, efficient, and highly compact heat exchangers. Heat exchangers are critical to efficient thermal energy exchange in numerous industrial applications and everyday life, with valuable applications in electricity generation, transportation, petrochemical plants, waste heat recovery, and much more. HITEMMP projects target heat exchangers capable of…


Status: Active
Release Date:
Project Count: 59

IDEAS

Innovative Development in Energy-Related Applied Science

The IDEAS program – short for Innovative Development in Energy-Related Applied Science – provides a continuing opportunity for the rapid support of early-stage applied research to explore pioneering new concepts with the potential for transformational and disruptive changes in energy technology. IDEAS awards, which are restricted to maximums of one year in duration and $500,000 in funding, are intended to be flexible and may take the form of analyses or exploratory research that provides the agency with information useful for the subsequent development of focused technology programs. IDEAS…


Status: Alumni
Release Date:
Project Count: 15

IMPACCT

Innovative Materials and Processes for Advanced Carbon Capture Technologies

IMPACCT's projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for "Innovative Materials and Processes for Advanced Carbon Capture Technologies," the IMPACCT program is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting…


Status: Active
Release Date:
Project Count: 8

INTEGRATE

Innovative Natural-gas Technologies for Efficiency Gain in Reliable and Affordable Thermochemical Electricity-generation

The projects that comprise ARPA-E’s INTEGRATE (Innovative Natural-gas Technologies for Efficiency Gain in Reliable and Affordable Thermochemical Electricity-generation) program will develop natural gas fueled, distributed, ultra-high efficiency electrical generation systems. The program will focus on hybrid system designs that integrate a fuel cell with a heat or reactive engine, such as a gas turbine or a reciprocating internal combustion engine. The INTEGRATE program encourages the development and demonstration of integrated hybrid systems and/or enabling component technologies. Project…


Status: Active
Release Date:
Project Count: 16

IONICS

Integration and Optimization of Novel Ion-Conducting Solids

Today's growing demand for electricity from carbon-free, renewable resources and for alternatives to petroleum as a transportation fuel has led to a strong desire for cost-effective and durable energy storage and conversion products. The projects that make up ARPA-E's IONICS program, short for "Integration and Optimization of Novel Ion-Conducting Solids," are paving the way for technologies that overcome the limitations of current battery and fuel cell products by creating high performance separators and electrodes built with solid ion conductors. The program will focus on…


Status: Active
Release Date:
Project Count: 21

MARINER

Macroalgae Research Inspiring Novel Energy Resources

The projects that comprise ARPA-E’s MARINER (Macroalgae Research Inspiring Novel Energy Resources) program seek to develop the tools to enable the United States to become a global leader in the production of marine biomass. Presently, macroalgae, or seaweed, is primarily used as food for human consumption, but there is a growing opportunity for the production of macroalgae for use as feedstock for fuels and chemicals, as well as animal feed. ARPA-E estimates the United States has suitable conditions and geography to produce at least 500 million dry metric tons of macroalgae per year. Such…


Status: Active
Release Date:
Project Count: 9

MEITNER

Modeling-Enhanced Innovations Trailblazing Nuclear Energy Reinvigoration

The projects that comprise ARPA-E's MEITNER (Modeling-Enhanced Innovations Trailblazing Nuclear Energy Reinvigoration) program seek to identify and develop innovative technologies that can enable designs for lower cost, safer advanced nuclear reactors. These enabling technologies can establish the basis for a modern, domestic supply chain supporting nuclear technology. Projects will be improved and validated with advanced modeling and simulation tools, and project teams will have access to subject matter experts from nuclear and non-nuclear disciplines. An ARPA-E-provided Resource Team…


Status: Active
Release Date:
Project Count: 19

METALS

Modern Electro/Thermochemical Advances in Light Metals Systems

The projects that comprise ARPA-E's METALS program, short for "Modern Electro/Thermochemical Advances in Light Metal Systems," aim to find cost-effective and energy-efficient manufacturing techniques to process and recycle metals for lightweight vehicles and aircraft. Processing light metals such as aluminum, titanium, and magnesium more efficiently would enable competition with incumbent structural metals like steel to manufacture vehicles and aircraft that meet demanding fuel efficiency standards without compromising performance or safety.


Status: Active
Release Date:
Project Count: 12

MONITOR

Methane Observation Networks with Innovative Technology to Obtain Reductions

The projects that comprise ARPA-E’s Methane Observation Networks with Innovative Technology to Obtain Reductions (MONITOR) program are developing innovative technologies to cost-effectively and accurately locate and measure methane emissions associated with natural gas production. Such low-cost sensing systems are needed to reduce methane leaks anywhere from the wellpad to local distribution networks, reduce safety hazards, promote more efficient use of our domestic natural gas resources, and reduce the overall greenhouse gas (GHG) impact from natural gas development. In order to evaluate the…


Status: Active
Release Date:
Project Count: 11

MOSAIC

Micro-scale Optimized Solar-cell Arrays with Integrated Concentration

ARPA-E’s MOSAIC program seeks to develop technologies and concepts that will lower the cost of solar photovoltaic (PV) power systems and improve their performance. Project teams will develop micro-scale concentrated photovoltaic systems (CPV) that are similar in cost and size to conventional solar PV systems, but with greatly increased performance levels. Multidisciplinary teams will leverage expertise in conventional flat-plate PV, CPV, manufacturing, optical engineering, and material science to produce a new class of PV panels. If successful, these technologies could facilitate cost-…


Status: Alumni
Release Date:
Project Count: 13

MOVE

Methane Opportunities for Vehicular Energy

The projects that comprise ARPA-E's MOVE Program, short for "Methane Opportunities for Vehicular Energy," are finding cost-effective ways to power passenger cars and other light-duty vehicles with America's abundant natural gas resources. Natural gas is currently less expensive than gasoline, and produces fewer harmful emissions than any other fossil fuel. Despite these advantages, significant technological and infrastructure barriers currently limit the use of natural gas as a major fuel source in the U.S. ARPA-E's MOVE projects are finding innovative ways to break through these barriers,…


Status: Active
Release Date:
Project Count: 11

NEXTCAR

Next-Generation Energy Technologies for Connected and Automated On-Road Vehicles

Recent rapid advances in driver assistance technologies and the deployment of vehicles with increased levels of connectivity and automation have created multiple opportunities to improve the efficiency of future vehicle fleets beyond in new ways. The projects that make up ARPA-E's NEXTCAR Program, short for "NEXT-Generation Energy Technologies for Connected and Automated On-Road Vehicles," are enabling technologies that use connectivity and automation to co-optimize vehicle dynamic controls and powertrain operation, thereby reducing energy consumption of the vehicle. Vehicle…


Status: Active
Release Date:
Project Count: 12

NODES

Network Optimized Distributed Energy Systems

The Network Optimized Distributed Energy Systems (NODES) Program aspires to enable renewables penetration at the 50% level or greater, by developing transformational grid management and control methods to create a virtual energy storage system based on use of flexible load and distributed energy resources (DERs). The challenge is to cost-effectively and reliably manage dynamic changes in the grid by leveraging these additional grid resources, while maintaining customer quality of service. The expected benefits include reduced periods of costly peak demand, reduced energy waste and increased…


Status: Alumni
Release Date:
Project Count: 41

OPEN 2009

Open Funding Solicitation

In 2009, ARPA-E issued an open call for the most revolutionary energy technologies to form the agency's inaugural program. The first open solicitation was open to ideas from all energy areas and focused on funding projects already equipped with strong research and development plans for their potentially high-impact technologies. The projects chosen received a level of financial support that could accelerate technical progress and catalyze additional investment from the private sector. After only 2 months, ARPA-E's investment in these projects catalyzed an additional $33 million in investments…


Status: Alumni
Release Date:
Project Count: 66

OPEN 2012

Open Funding Solicitation

In 2012, ARPA-E issued its second open funding opportunity designed to catalyze transformational breakthroughs across the entire spectrum of energy technologies. ARPA-E received more than 4,000 concept papers for OPEN 2012, which hundreds of scientists and engineers thoroughly reviewed over the course of several months. In the end, ARPA-E selected 66 projects for its OPEN 2012 program, awarding them a total of $130 million in federal funding. OPEN 2012 projects cut across 11 technology areas: advanced fuels, advanced vehicle design and materials, building efficiency, carbon capture, grid…


Status: Active
Release Date:
Project Count: 39

OPEN 2015

Open Funding Solicitation

In 2015, ARPA-E issued its third open funding opportunity designed to catalyze transformational breakthroughs across the entire spectrum of energy technologies. ARPA-E received more than 2,000 concept papers for OPEN 2015, which hundreds of scientists and engineers thoroughly reviewed over the course of several months. In the end, ARPA-E selected 41 projects for its OPEN 2015 program, awarding them a total of $125 million in federal funding. OPEN 2015 projects cut across ten technology areas: building efficiency, industrial processes and waste heat, data management and communication, wind,…


Status: Active
Release Date:
Project Count: 79

OPEN 2018

Open Funding Solicitation

In 2018, ARPA-E issued its fourth open funding opportunity, designed to catalyze transformational breakthroughs across the entire spectrum of energy technologies. ARPA-E received thousands of concept papers for OPEN 2018, which hundreds of scientists and engineers reviewed over the course of several months. ARPA-E selected 45 projects for its OPEN 2018 program, awarding them $112 million in federal funding. OPEN 2018 projects cut across ten technology areas: building efficiency, distributed generation, electrical efficiency, grid, grid storage, manufacturing efficiency, resource efficiency,…


Status: Active
Release Date:
Project Count: 6

PERFORM

Performance-based Energy Resource Feedback, Optimization, and Risk Management

Optimal utilization of all grid assets requires a fundamental shift in grid management rooted in an understanding of asset risk and system risk. Existing management practices were designed for a grid consisting of and fully reliant on conventional generation assets. Present operational and planning practices do not acknowledge or leverage the true capabilities and associated challenges of emerging assets. A novel risk-driven paradigm will allow emerging assets to be trusted and relied upon to provide the critical products and services necessary to maintain an efficient and reliable grid,…


Status: Alumni
Release Date:
Project Count: 10

PETRO

Plants Engineered to Replace Oil

The 10 projects that comprise ARPA-E’s PETRO program, short for “Plants Engineered to Replace Oil,” aim to develop non-food crops that directly produce transportation fuel. These crops can help supply the transportation sector with plant-derived fuels that are cost-competitive with petroleum and do not affect U.S. food supply. PETRO aims to redirect the processes for energy and carbon dioxide (CO2) capture in plants toward fuel production. This would create dedicated energy crops that serve as a domestic alternative to petroleum-based fuels and deliver more energy per acre with less…


Status: Active
Release Date:
Project Count: 8

PNDIODES

Power Nitride Doping Innovation Offers Devices Enabling SWITCHES

The projects that comprise ARPA-E’s PNDIODES (Power Nitride Doping Innovation Offers Devices Enabling SWITCHES) program seek to develop transformational advances in the process of selective area doping in the wide-bandgap (WBG) semiconductor, gallium nitride (GaN), and its alloys. Wide-bandgap semiconductors have applications similar to today’s popular semiconductors, such as silicon and gallium arsenide, but with properties that allow them to operate at much higher voltages, frequencies and temperatures than these traditional materials. These qualities inherent to WBGs stand to enable high-…


Status: Active
Release Date:
Project Count: 22

RANGE

Robust Affordable Next Generation Energy Storage Systems

The projects that comprise ARPA-E's RANGE Program, short for "Robust Affordable Next Generation Energy Storage Systems," seek to develop transformational electrochemical energy storage technologies that will accelerate the widespread adoption of electric vehicles by dramatically improving their driving range, cost, and safety. RANGE focuses on four specific areas 1) aqueous batteries constructed using water to improve safety and reduce costs, 2) non-aqueous batteries that incorporate inherent protection mechanisms that ensure no harm to vehicle occupants in the event of a collision or fire, 3…


Status: Alumni
Release Date:
Project Count: 14

REACT

Rare Earth Alternatives in Critical Technologies

The projects that comprise ARPA-E's REACT program, short for "Rare Earth Alternatives in Critical Technologies", are developing cost-effective alternatives to rare earths, the naturally occurring minerals with unique magnetic properties that are used in electric vehicle (EV) motors and wind generators. The REACT projects will identify low-cost and abundant replacement materials for rare earths while encouraging existing technologies to use them more efficiently. These alternatives would facilitate the widespread use of EVs and wind power, drastically reducing the amount of greenhouse gases…