Additive, Topology-Optimized Ultra-Compact Heat Exchanger
Technology Description:
UTRC will develop an ultra-compact, topology-optimized heat exchanger capable of operating in environments with temperatures and pressures up to 800°C (1472°F) and 250 bar (3626 psi) that is substantially smaller and more durable than state-of-the art high-temperature, high-pressure heat exchangers. A quadruple optimization approach that addresses performance, durability, manufacturing, and cost constraints provides the framework for the superalloy-based heat exchanger. UTRC will leverage extensive additive manufacturing research and aerospace and supercritical carbon dioxide (sCO2) power generation experience to develop and commercialize the technology. The team will work on transitioning the heat exchanger into aviation applications with significant fuel burn savings in transport. This would substantially reduce aviation fuel usage and carbon emissions.
Potential Impact:
HITEMMP projects will enable a revolutionary new class of heat exchangers and innovative approaches to advanced manufacturing with applications for a wide range of commercial and industrial energy producers and consumers.
Security:
Environment:
More efficient electricity generation and industrial processes could significantly reduce emissions by enabling more efficient operations.
Economy:
HITEMMP technologies could enable more cost-effective, efficient, and compact modular power generation systems for multiple applications.