Advance Castable Nanostructured Alloys for First-Wall/Blanket Applications

Default ARPA-E Project Image

Oak Ridge, Tennessee
Project Term:
03/15/2021 - 03/14/2024

Critical Need:

For more than 60 years, fusion research and development (R&D) has focused on attaining the required fuel density, temperature, and energy confinement time of the plasma fuel of a viable fusion energy system. Currently, relatively modest investments have been made in the required and equally critical enabling technologies and advanced materials surrounding the plasma fuel. The GAMOW program supports innovative R&D that will help establish both the technical and commercial viability of (i) all the required technologies and subsystems between the fusion plasma and the balance of plant, (ii) cost-effective, high-efficiency, high-duty-cycle driver technologies, and (iii) novel fusion materials and advanced manufacturing of these materials.

Project Innovation + Advantages:

Reduced-activation ferritic-martensitic (RAFM) steels are critical structural materials for fusion-energy subsystems such as integrated first-wall and blanket technology. Current RAFM steels cannot operate above ~550° C (1020° F). Castable nanostructured alloys (CNAs), recently developed at laboratory scale, can potentially achieve significantly higher temperatures, offering a pathway to more efficient operation, however. ORNL will establish a new class of RAFM steels based on carbide-strengthened CNAs to demonstrate industry-scale CNA production viability. The innovations could better enable fusion energy system design and fabrication and benefit other industries that use similar materials for similarly demanding applications. High-strength CNAs with superior microstructure and optimal chemistry are expected to improve reliability and expand the performance envelope for fusion reactors while reducing costs. These CNAs can improve safety while reducing material volume requirements and improving environmental sustainability via reduced low-level waste volume. This approach can potentially reduce the required mass and costs of RAFM materials in future fusion power plants by a factor of two while allowing for improved levelized cost of energy via higher-temperature blanket operation.

Potential Impact:

Successful development of fusion energy science and technology could lead to a safe, carbon-free, abundant energy source for developed and emerging economies.


The GAMOW program will advance American leadership in fusion energy science and technology.


If successfully developed and commercialized, fusion energy can provide abundant, zero-carbon energy.


Advances in GAMOW’s technical areas will help accelerate progress toward commercial fusion energy and a new zero-carbon energy economy.


ARPA-E Program Director:
Dr. Ahmed Diallo
Project Contact:
Dr. Ying Yang
Press and General Inquiries Email:
Project Contact Email:


University of Michigan

Related Projects

Release Date: