Advanced HTS Conductors Customized for Fusion

Default ARPA-E Project Image


Program:
GAMOW
Award:
$1,500,000
Location:
Houston, Texas
Status:
ACTIVE
Project Term:
03/01/2021 - 02/29/2024

Critical Need:

For more than 60 years, fusion research and development (R&D) has focused on attaining the required fuel density, temperature, and energy confinement time of the plasma fuel of a viable fusion energy system. Currently, relatively modest investments have been made in the required and equally critical enabling technologies and advanced materials surrounding the plasma fuel. The GAMOW program supports innovative R&D that will help establish both the technical and commercial viability of (i) all the required technologies and subsystems between the fusion plasma and the balance of plant, (ii) cost-effective, high-efficiency, high-duty-cycle driver technologies, and (iii) novel fusion materials and advanced manufacturing of these materials.

Project Innovation + Advantages:

Rare earth barium copper oxide (REBCO) tapes enable >20-T (Tesla) magnets in compact, high-field magnetic-fusion devices. Commercial REBCO tapes are expensive at $300/kA-m (kiloampere-meter) based on the operating condition of HTS (high-temperature superconducting) magnets for compact fusion energy systems. The tape cost must be reduced to approximately $10/kA-m for HTS-based fusion systems to be commercially cost-competitive. Almost all commercial REBCO tapes use a generic high-temperature-resistant alloy, limiting their yield strength to ~700 MPa (101,526 psi), a constraining factor for ultra-high-field fusion devices in which the mechanical integrity of the superconducting magnet is critically essential. The University of Houston aims to develop HTS conductors with an increased critical current at >20 T and lower raw materials cost for commercial fusion systems. The team will employ an advanced metal-organic chemical vapor deposition process to reduce costs while achieving high critical-current thresholds and use high-strength alloys to increase the yield strength of REBCO tapes. These innovations could reduce the cost of HTS conductors by a factor of 30.

Potential Impact:

Successful development of fusion energy science and technology could lead to a safe, carbon-free, abundant energy source for developed and emerging economies.

Security:

The GAMOW program will advance American leadership in fusion energy science and technology.

Environment:

If successfully developed and commercialized, fusion energy can provide abundant, zero-carbon energy.

Economy:

Advances in GAMOW’s technical areas will help accelerate progress toward commercial fusion energy and a new zero-carbon energy economy.

Contact

ARPA-E Program Director:
Dr. Ahmed Diallo
Project Contact:
Prof. Venkat Selvamanickam
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
selva@uh.edu

Partners

University of California - Irvine
Massachusetts Institute of Technology

Related Projects


Release Date:
09/02/2020