ARC-SAFE: Accelerated Response semiconducting Contactors and Surge Attenuation For DC Electrical systems

Default ARPA-E Project Image


Program:
BREAKERS
Award:
$3,750,000
Location:
Albuquerque, New Mexico
Status:
ALUMNI
Project Term:
09/13/2019 - 09/19/2023

Technology Description:

Sandia National Laboratories will develop a solid-state circuit breaker for medium to high voltage applications based on a gallium nitride (GaN) optically triggered, photoconductive semiconductor switch (PCSS). During normal operation, the current will flow through high-performance commercial silicon carbide (SiC) devices to achieve high efficiency. When a fault occurs, the fast-response GaN PCSS will be used to break the current. The concept builds on Sandia’s knowledge of optically triggered GaN devices, as well as the team’s experience in circuit design for MV applications. The GaN PCSS will enable high-voltage operation, potentially scalable from 1 to 100 kV, while achieving superior electrical isolation due to the optical triggering approach. This technology could contribute to more widespread adoption of MVDC power distribution across the grid.

Potential Impact:

The proposed breaker is installed close to loads to rapidly detect and react to the short-circuit fault. Thus, it could enable an increased number of electronic loads that operate using DC, such as ultra-fast electric vehicle charging stations and utility scale energy storage battery units, to connect to the MV distribution grid. This would improve overall power delivery efficiency.

Security:

DC circuit breakers respond significantly faster than their AC counterparts, enabling prompt isolation and protection of assets from electrical faults. MVDC circuit breakers and grids enable greater resiliency to cyber and other attacks through targeted isolation of affected nodes.

Environment:

MVDC breaker-enabled microgrids could facilitate greater deployment and adoption of distributed renewable resources, greatly reducing power sector emissions. Electrification of transportation (e.g., ships, aviation) with DC systems would also reduce emissions.

Economy:

Proliferation of MVDC systems protected by more effective DC circuit breakers could drive higher energy efficiency, lower equipment costs, and bolster grid resiliency.

Contact

ARPA-E Program Director:
Dr. Isik Kizilyalli
Project Contact:
Gregory Pickrell
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
gpickre@sandia.gov

Partners

University of New Mexico
University of Illinois, Urbana Champaign

Related Projects


Release Date:
09/12/2018