Bioenergy Production Based on an Engineered Mixotrophic Consortium for Enhanced CO2 Fixation
Technology Description:
The University of Delaware aims to develop a platform technology based on synthetic syntrophic consortia of Clostridium microbes to enable fast and efficient use of renewable carbohydrates to produce targeted metabolites as biofuels or chemicals. In this syntrophic microbial consortium, two microbial species are co-cultured, allowing the different species to divide individual bioconversion steps and reduce their individual metabolic burden. This project will achieve complete utilization of glucose substrate carbon while also using additional CO2 and electrons from H2 to generate improved yields of products such as isopropanol. The isopropanol product can serve as biofuel component or a valuable solvent with a market size of $2.65B.
Potential Impact:
The application of biology to sustainable uses of waste carbon resources for the generation of energy, intermediates, and final products---i.e., supplanting the “bioeconomy”—provides economic, environmental, social, and national security benefits and offers a promising means of carbon management.