Capability in Theory, Modeling, and Validation for a Range of Innovative Fusion Concepts Using High-Fidelity Moment-Kinetic Models

Default ARPA-E Project Image


Program:
BETHE
Award:
$2,399,999
Location:
Blacksburg, Virginia
Status:
ACTIVE
Project Term:
05/04/2020 - 06/30/2024

Technology Description:

As fusion machines move toward a burning-plasma regime, liquid first walls and blankets may be needed to handle first‑wall heat-flux, reduce erosion, and eventually to convert energy and generate tritium fuel. Repetitively pulsed fusion designs may require extreme electrode survivability, where the electrode may be solid, liquid, or a combination of both. It is critical to address how plasma dynamics in the fusion plasma will couple with both liquid-metal and electrode-material dynamics for fusion energy to become realizable. This Capability Team will use fluid and reduced kinetics, including building on its existing open-source simulation technology, Gkeyll, and a multi-phase, incompressible magnetohydrodynamic model, to study liquid- and solid-wall dynamics in the presence of fusion plasma and to experimentally validate aspects of the modeling tools. The team will perform high-fidelity kinetic plasma simulations that can account for complex plasma-wall interactions to support the development of multiple lower-cost fusion concepts.

Potential Impact:

Accelerating and lowering the costs of fusion development and eventual deployment will enable fusion energy to contribute to:

Security:

Fusion energy will ensure the U.S.’s technological lead and energy security.

Environment:

Fusion energy will improve our chances of meeting growing global clean-energy demand and realizing cost-effective, net-zero carbon emissions, while minimizing pollution and avoiding long-lived radioactive waste.

Economy:

As a disruptive technology, fusion energy will likely create new markets, opportunities, and export advantages for the U.S.

Contact

ARPA-E Program Director:
Dr. Robert Ledoux
Project Contact:
Ella Atkins
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
ematkins@vt.edu

Partners

PPPL: Princeton Plasma Physics Laboratory

Related Projects


Release Date:
11/07/2019