CO2 for Commodity Polymer Synthesis

Default ARPA-E Project Image

Stanford, California
Project Term:
07/01/2018 - 06/30/2019

Critical Need:

Petroleum, natural gas, and coal provide critically important carbon for the production of commodity chemicals today. Carbon dioxide could serve as a potential alternative carbon source for chemical production. Using CO2 as a carbon source could reduce greenhouse gas emissions while simultaneously decreasing fossil fuel consumption in chemical production. There exists, however, numerous technical and economic challenges that must be overcome before carbon dioxide can be harnessed on the scale required for significant impact.

Project Innovation + Advantages:

Stanford University will develop a new process to produce furan-2,5-dicarboxylic acid (FDCA), a potential replacement for purified terephthalic acid (PTA). PTA is produced from petroleum on the scale of 60 million tons per year and used to make synthetic polymers like polyester. The production of PTA is associated with 90 million tons of greenhouse gas emissions annually. FDCA, on the other hand, can be made from biomass and its polymers boast superior physical properties for high-volume applications such as beverage bottles. Current technologies produce FDCA from food sources (fructose) and have not demonstrated economic competitiveness with PTA. The Stanford technology produces FDCA from CO2 and furfural, a feedstock chemical produced industrially from waste biomass. The use of CO2 avoids challenging oxidation reactions required for fructose-based syntheses, which provides a potential advantage for commercial production. Packed-bed reactors utilizing the technology have achieved high FDCA yields but require reaction times that are too long for industrial application. This project will transition the process to a fluidized bed reactor, where reactants are suspended in flowing CO2, to achieve industrially viable synthesis rates. If optimized, the process could enable the production of FDCA with negative greenhouse gas emissions.


ARPA-E Program Director:
Dr. Scott Litzelman
Project Contact:
Matthew Kanan
Press and General Inquiries Email:
Project Contact Email:

Related Projects

Release Date: