De-Coupled Solid Oxide Fuel Cell Gas Turbine Hybrid (dFC-GT)
Technology Description:
Washington State University will develop a hybrid power system using a high-pressure, high-temperature fuel cell stack and gas turbine. The project will examine the benefits of a decoupled design, in which the fuel cell stack and gas turbine components are not directly connected within the hybrid system. The team’s other primary innovation is the integration of a membrane to concentrate oxygen from air supplied by the turbine before feeding it into the fuel cell, which avoids pressurizing the entire air feed stream, improving performance and boosting efficiency. The pressurized solid oxide fuel cell (SOFC) and a micro gas turbine (mGT) are physically separated by the ceramic oxygen transport membrane (OTM), which prevents the SOFC from being exposed to damaging pressure surges from the mGT. In this way, the decoupled system allows the individual components to contribute synergistically to the high-efficiency, cost-effective hybrid power generation system. By combining the efficiency of pressurized SOFC operation using natural gas and pure oxygen fuel with a microturbine in a decoupled configuration, the team hopes to achieve 75% fuel-to-electric efficiency.
Potential Impact:
The INTEGRATE program is developing a new class of distributed and ultra-efficient (>70%) fuel to electric power conversion systems for commercial and industrial customers.
Security:
Environment:
High electric efficiency and decreased reliance on combustion would result in lower greenhouse gas and air pollutant emissions.