Designing Novel Multicomponent Niobium Alloys for High Temperature: Integrated Design, Rapid Processing & Validation Approach

Default ARPA-E Project Image


Program:
ULTIMATE
Award:
$800,000
Location:
Salt Lake City,
Utah
Status:
ACTIVE
Project Term:
05/01/2021 - 10/31/2022
Website:

Critical Need:

Gas turbines produce approximately 35% of the total electricity generation in the U.S. Improving their efficiency is important for reducing energy usage and carbon emissions. Similarly, higher efficiency aviation and other industrial turbines would improve the economics and reduce greenhouse gas emissions in these sectors. Gas turbine efficiency largely depends on the gas temperature at the inlet; the higher the temperature, the higher the efficiency. Gas turbine operational temperature is currently limited by its component materials, particularly those in the path of the hot gas such as turbine blades, vanes, nozzles, and shrouds. Turbine blades experience the greatest operational burden because they must concurrently withstand the highest temperatures and stresses. Currently, turbine blades are made of single crystal nickel (Ni)- or cobalt (Co)-based superalloys. After many years of refinements, their development has plateaued. There is a need to discover, develop, and implement novel materials that work at temperatures significantly higher than that of the Ni or Co superalloys if further efficiency gains are to be realized.

Project Innovation + Advantages:

The University of Utah will use physical metallurgy principles and artificial intelligence to identify the chemistry of new niobium (Nb)-based refractory alloys to ensure they have excellent high-temperature properties without being brittle at low temperatures. The artificial intelligence approach will discover promising compositions for the new alloys based on existing knowledge of simple alloys. The computational materials models will be used to predict the proper processing conditions for the material chemistries. This two-step process can down-select the alloy compositions and manufacturing conditions from millions of possibilities, greatly reducing the time and cost for the search of new materials. The team will use advanced microscopy techniques to characterize the sample microstructures. Successful chemistries will be selected for scale-up experiments. If successful, the project will identify the alloy compositions and processing conditions to potentially mass produce turbine blades that can operate at temperatures significantly higher than the current state of the art.

Potential Impact:

Combining development of new ultrahigh temperature materials with compatible coatings and manufacturing technologies has the potential to increase gas turbine efficiency up to 7%, which will significantly reduce wasted energy and carbon emissions.

Security:

Coal-fired and nuclear-powered plant electricity generation is uneconomical, unsafe, outdated, and/or contributes to significant CO2 emissions. Increasing gas turbine efficiency is critical to ensuring that plants can effectively deploy their capacity to the grid, increasing energy security.

Environment:

Improving gas turbine efficiency can significantly reduce carbon emissions from air travel, which represents 2% of all global carbon emissions.

Economy:

By 2050, a 7% efficiency improvement in the natural gas turbines used for U.S. electricity generation could save up to 15-16 quads of energy; in civilian aircraft turbines, 3-4 quads of energy could be saved for U.S. air travel.

Contact

ARPA-E Program Director:
Dr. Peter de Bock
Project Contact:
Dr. Ravi Chandran
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
ravi.chandran@utah.edu

Related Projects


Release Date:
11/18/2020