Effective Selective Area Growth
Technology Description:
Arizona State University (ASU) proposes a comprehensive project to advance fundamental knowledge in the selective area doping of GaN using selective regrowth of gallium nitride (GaN) materials. This will lead to the development of high-performance GaN vertical power transistors. The ASU team aims to develop a better mechanistic understanding of these fundamental materials issues, by focusing on three broad areas. First, they will use powerful characterization methods to study fundamental materials properties such as defects, surface states, and investigate possible materials degradation mechanisms. Next, they will develop innovative epitaxial growth and fabrication processes such as Atomic Layer Etching and novel surface passivations, to tackle the materials engineering challenges related to selective area doping for GaN p-n junctions. Finally, they will apply their research to demonstrate randomly placed, reliable, contactable p-n junctions for GaN vertical power devices. If successful, this project will provide a path towards high efficiency, high power, small form factor, and high thermal performance GaN vertical power devices.
Potential Impact:
If successful, PNDIODES projects will enable further development of a new class of power converters suitable in a broad range of application areas including automotive, industrial, residential, transportation (rail & ship), aerospace, and utilities.