Electroactive Smart Air-Conditioner VEnt Registers (eSAVER)

Critical Need:
Heating, Ventilation, and Air Conditioning (HVAC) account for 13% of energy consumed in the U.S. and about 40% of the energy used in a typical U.S. residence, making it the largest energy expense for most homes. Even though more energy-efficient HVAC technologies are being adopted in both the commercial and residential sectors, these technologies focus on efficiently heating or cooling large areas and dealing with how the building’s net occupancy changes during a day, a week and across seasons. Building operators have to tightly manage temperature for an average occupancy comfort level; but the occupants only occupy a small fraction of the building’s interior. There is a critical need for technologies that create localization of thermal management to relax the temperature settings in buildings, reduce the load on HVAC systems and enhance occupant comfort. This is achieved by tailoring the thermal environment around the individual, thus saving energy by not over-heating or over-cooling areas within the building where the occupants do not reside.
Project Innovation + Advantages:
The State University of New York (SUNY) at Stony Brook will develop eSAVER, an active air conditioning vent capable of modulating airflow distribution, velocity, and temperature to promote localized thermal envelopes around building occupants. Stony Brook’s smart vent modulates the airflow using an array of electro-active polymer tubes that are individually controlled to create a localized curtain of air to suit the occupant’s heating or cooling needs. The eSAVER can immediately be implemented by simply replacing an existing HVAC register with the new unit or can be installed in new constructions for significant reduction in HVAC system size,construction cost,and further improvement in energy efficiency.The project team estimates this will result in upwards of 30% energy savings through directed localization of existing building heating/cooling output.
Potential Impact:
If successful, DELTA technology could increase energy efficiency, reduce emissions produced by powering traditional HVAC systems, and enable more sustainable heating and cooling architectures for energy-efficient building design.
Security:
The innovations developed under the DELTA program have the potential to increase energy efficiency, improve overall building performance, and reduce HVAC energy consumption by at least 15%.
Environment:
The heating and cooling of buildings generates about 13% of the U.S. domestic greenhouse gas emissions. Through improved utilization of energy produced by fossil fuels with full adoption DELTA can reduce these emission by 2%.
Economy:
DELTA program innovations can help U.S. businesses eventually reduce reliance on tightly controlled building environments, thus enabling radical and sustainable architecture in next generation energy efficient building designs.
Contact
ARPA-E Program Director:
Dr. Jennifer Gerbi
Project Contact:
Dr. Ya Wang
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
ya.s.wang@stonybrook.edu
Partners
NxEco, Inc
Polyradiant Corp.
University of California, Los Angeles
Related Projects
Release Date:
12/16/2014