Enhanced Stability AEM at High Temperatures

Default ARPA-E Project Image

Clemson, South Carolina
Project Term:
03/31/2017 - 06/30/2018

Technology Description:

Tetramer Technologies will develop an anion exchange membrane (AEM) as an alternative to proton exchange membranes (PEM) for use in fuel cells and electrolyzers. The team will test a newly developed AEM for stability in alkaline conditions at a temperature of 80°C, enhanced ion conductivity, controlled membrane swelling, and other required properties. Industry has not yet achieved a cost-effective, commercially viable AEM with long-term chemical and physical stability. If such AEMs could be developed, then AEM-fuel cells could use inexpensive, non-precious metal catalysts, as opposed to expensive metal catalysts like platinum. Platinum in PEM fuel cells accounts for close to 50% of the total fuel cell stack cost at high volume, while the acid-resistant bipolar plates account for an additional 22% of the total stack cost. In alkaline conditions, switching precious metals for cheaper metal catalysts could reduce stack costs by an estimated 50%, which would result in a 25% lower overall vehicle fuel cell system cost. If successful, the team’s polymers could produce a pathway toward dramatically cheaper fuel cells that exhibit comparable or better performance to today’s fuel cells.


ARPA-E Program Director:
Dr. Paul Albertus
Project Contact:
Dr. Earl Wagener
Press and General Inquiries Email:
Project Contact Email:


Pennsylvania State University

Related Projects

Release Date: