Columbus, Ohio
Project Term:
07/01/2010 - 06/30/2014

Technology Description:

The Ohio State University is genetically modifying bacteria to efficiently convert carbon dioxide directly into butanol, an alcohol that can be used directly as a fuel blend or converted to a hydrocarbon, which closely resembles gasoline. Bacteria are typically capable of producing a certain amount of butanol before it becomes too toxic for the bacteria to survive. Ohio State is engineering a new strain of the bacteria that could produce up to 50% more butanol before it becomes too toxic for the bacteria to survive. Finding a way to produce more butanol more efficiently would significantly cut down on biofuel production costs and help make butanol cost competitive with gasoline. Ohio State is also engineering large tanks, or bioreactors, to grow the biofuel-producing bacteria in, and they are developing ways to efficiently recover biofuel from the tanks.

Potential Impact:

If successful, Ohio State would create a liquid transportation fuel that is cost competitive with traditional gasoline-based fuels and 10 times more efficient than existing biofuels.


Cost-competitive electrofuels would help reduce U.S. dependence on imported oil and increase the nation's energy security.


Widespread use of electrofuels would help limit greenhouse gas emissions and reduce demands for land, water, and fertilizer traditionally required to produce biofuels.


A domestic electrofuels industry could contribute tens of billions of dollars to the nation's economy. Widespread use of electrofuels could also help stabilize gasoline prices—saving drivers money at the pump.


ARPA-E Program Director:
Dr. Ramon Gonzalez
Project Contact:
Dr. F. Tabita
Press and General Inquiries Email:
Project Contact Email:


Battelle Memorial Institute

Related Projects

Release Date: