Heat-Exchanger Intensification through Powder Processing and Enhanced Design (HIPPED)
Technology Description:
Michigan State University’s proposed technology is a highly scalable heat exchanger suited for high-efficiency power generation systems that use supercritical CO2 as a working fluid and operate at high temperature and high pressure. It features a plate-type heat exchanger that enables lower cost powder-based manufacturing. The approach includes powder compaction and sintering (powder metallurgy) integrated with laser-directed energy deposition additive manufacturing. Each plate is covered with packed, precisely designed and formed three-dimensional features that promote mixing, intensify heat transfer, and provide stability to prevent large plate deformation under high pressure. The super-alloys developed provide strength at the highest operating temperatures (1100°C) and significant corrosion resistance. The proposed concept extends the range for indirect heat exchange to extreme conditions where state-of-the-art heat exchangers cannot operate. In addition, new ferrous- and nickel-based alloys developed are suitable for other high temperature applications.
Potential Impact:
HITEMMP projects will enable a revolutionary new class of heat exchangers and innovative approaches to advanced manufacturing with applications for a wide range of commercial and industrial energy producers and consumers.