Integration of Ultrahigh Capacity Sorbents into Direct Air Capture Systems

ARPA-E Project Image


Program:
Special Projects
Award:
$499,968
Location:
Alameda,
California
Status:
ACTIVE
Project Term:
07/05/2021 - 01/04/2023

Critical Need:

This topic seeks to support entrepreneurial energy discoveries, by identifying and supporting disruptive concepts in energy-related technologies within small businesses and collaborations with universities and national labs. These projects have the potential for large-scale impact, and if successful could create new paradigms in energy technology with the potential to achieve significant reductions in U.S. energy consumption, energy-related imports, or energy-related emissions. These specific projects address technology areas across ARPA-E’s mission spaces, with particular focus on: Advanced bioreactors; Approaches and tools to create enhanced geothermal systems; Non-evaporative dehydration and drying technologies; Approaches to significantly enhance the rate and/or potential scale of carbon mineralization; Separation of CO2 from ambient air (direct air capture); High-rate separation of dissolved inorganic carbon from the ocean to produce a CO2 stream; Advanced trees and other engineered biological systems for carbon sequestration; Innovative deep ocean collector designs for mining polymetallic nodules; Environmental sensors capable of operation in deep ocean environments for mining polymetallic nodules; and Non-carbothermic smelting technologies. Awards under this topic are working to support research and establish potential new areas for technology development, while providing ARPA-E with information that could lead to new focused funding programs. The focus of these projects is to support exploratory research to establish viability, proof-of-concept demonstration for new energy technology, and/or modeling and simulation efforts to guide development for new energy technologies.

Project Innovation + Advantages:

Direct air capture (DAC) of carbon dioxide (CO2) is a promising technology in reversing greenhouse gas emissions. DAC is possible through liquid and solid-sorbent technologies, but the lower energy costs for solid-sorbent technology can facilitate widespread, rapid deployment of DAC systems. Current DAC sorbents are limited in how much CO2 they can remove for a given amount of material, requiring large amounts of sorbent, increased system sizes, and higher cost. Mosaic Materials has developed an ultrahigh capacity sorbent using materials known as metal-organic frameworks (MOFs). Mosaic Materials’ MOF sorbent technology significantly outperforms other sorbents with respect to CO2 capacity, selectivity, and removal under extremely low CO2 concentrations. In this project, Mosaic Materials will integrate its MOF sorbent technology into an optimized air contactor to prove their technology’s ability to lower DAC costs.

Contact

ARPA-E Program Director:
Dr. Scott Litzelman
Project Contact:
Dr. Thomas McDonald
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
tmcdonald@mosaicmaterials.com

Related Projects


Release Date:
05/20/2020