Laser Spike Annealing for Dopant Activation

Default ARPA-E Project Image


Program:
PNDIODES
Award:
$2,192,619
Location:
Ithaca, New York
Status:
ALUMNI
Project Term:
09/15/2017 - 03/31/2021
Website:
TBD

Technology Description:

Advanced doping methods are required to realize the potential of gallium nitride (GaN)-based devices for future high efficiency, high power applications. Ion implantation is a doping process used in other semiconductor materials such as Si and GaAs but has been difficult to use in GaN due to the limited ability to perform a damage recovery anneal in GaN. JR2J will develop an innovative laser spike annealing technique to activate implanted dopants in GaN. Laser spike annealing is a high-temperature (above 1300 ºC) heat treatment technique that activates the dopants in GaN and repairs damage done during the implantation process. By keeping the laser spike duration very short (0.1-100 milliseconds), the technique is hypothesized to be short enough to avoid degradation of the GaN lattice itself. There are commercially available laser spike annealing systems, typically used in Si-based processes, which should be able to be adapted to annealing GaN substrates with small modifications. If the proof of concept is achieved, this could provide a fast road to commercialization.

Potential Impact:

If successful, PNDIODES projects will enable further development of a new class of power converters suitable in a broad range of application areas including automotive, industrial, residential, transportation (rail & ship), aerospace, and utilities.

Security:

More energy efficient power electronics could improve the efficiency of the U.S. power sector. They could also significantly improve the reliability and security of the electrical grid.

Environment:

More efficient power use may help reduce power-related emissions. Low-cost and highly efficient power electronics could also lead to increased adoption of electric vehicles and greater integration of renewable power sources.

Economy:

Improved power electronics could yield a significant reduction in U.S. electricity consumption, saving American families and businesses money on their power bills.

Contact

ARPA-E Program Director:
Dr. Isik Kizilyalli
Project Contact:
Dr. Richard Brown
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
rjamesbrown@gmail.com

Partners

Lawrence Berkeley National Laboratory

Related Projects


Release Date:
06/10/2016