Lightwave Networks for Datacenters
Technology Description:
The University of California, San Diego (UC San Diego) will develop a new datacenter network based on photonic technology that can double the energy efficiency of a datacenter. Their LEED project mirrors the development of CPU processors in PCs. Previous limitations in the clock rate of computer processors forced designers to adopt parallel methods of processing information and to incorporate multiple cores within a single chip. The team envisions a similar development within datacenters, where the advent of parallel lightwave networks can act as a bridge to more efficient datacenters. This architecture leverages advanced photonic switching and interconnects in a scalable way. Additionally, the team will add a low-loss optical switch technology that routes the data traffic carried as light waves. They will also add the development of packaged, scalable transmitters and receivers that can be used in the system without the need for energy-consuming optical amplification, while still maintaining the appropriate signal-to-noise ratio. The combination of these technologies can create an easily controllable, energy-efficient architecture to help manage rapidly transitioning data infrastructure to cloud-based services and cloud-based computing hosted in datacenters.
Potential Impact:
If successful, developments from ENLITENED projects will result in an overall doubling in datacenter energy efficiency in the next decade through deployment of new photonic network topologies.