Liquid Fuel from Microbial Communities

Liquid Fuel from Microbial Communities


Program:
Electrofuels
Award:
$2,632,680
Location:
Charleston,
South Carolina
Status:
ALUMNI
Project Term:
07/09/2010 - 02/15/2015

Critical Need:

Domestic biofuels are an attractive alternative to petroleum-based transportation fuels. Biofuels are produced from plant matter, such as sugars, oils, and biomass. This plant matter is created by photosynthesis, a process that converts solar energy into stored chemical energy in plants. However, photosynthesis is an inefficient way to transfer energy from the sun to a plant and then to biofuel. Electrofuels—which bypass photosynthesis by using self-reliant microorganisms that can directly use the energy from electricity and chemical compounds to produce liquid fuels—are an innovative step forward.

Project Innovation + Advantages:

Medical University of South Carolina (MUSC) is developing an engineered system to create liquid fuels from communities of interdependent microorganisms. MUSC is first pumping carbon dioxide (CO2) and renewable sources of electricity into a battery-like cell. A community of microorganisms uses the electricity to convert the CO2 into hydrogen. That hydrogen is then consumed by another community of microorganisms living in the same system. These new microorganisms convert the hydrogen into acetate, which in turn feed yet another community of microorganisms. This last community of microorganisms uses the acetate to produce a liquid biofuel called butanol. Similar interdependent microbial communities can be found in some natural environments, but they've never been coupled together in an engineered cell to produce liquid fuels. MUSC is working to triple the amount of butanol that can be produced in its system and to reduce the overall cost of the process.

Potential Impact:

If successful, MUSC would create a liquid transportation fuel that is cost competitive with traditional gasoline-based fuels and 10 times more efficient than existing biofuels.

Security:

Cost-competitive electrofuels would help reduce U.S. dependence on imported oil and increase the nation's energy security.

Environment:

Widespread use of electrofuels would help limit greenhouse gas emissions and reduce demands for land, water, and fertilizer traditionally required to produce biofuels.

Economy:

A domestic electrofuels industry could contribute tens of billions of dollars to the nation's economy. Widespread use of electrofuels could also help stabilize gasoline prices—saving drivers money at the pump.

Contact

ARPA-E Program Director:
Dr. Eric Rohlfing
Project Contact:
Dr. Harold May
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
mayh@musc.edu

Partners

CDM Smith
University of South Carolina
Clemson University

Related Projects


Release Date:
04/29/2010