Multi-Modal Methane Measurement System
Technology Description:
IBM’s T.J Watson Research Center is working in conjunction with Harvard University and Princeton University to develop an energy-efficient, self-organizing mesh network to gather data over a distributed methane measurement system. Data will be passed to a cloud-based analytics system using custom models to quantify the amount and rate of methane leakage. Additionally, IBM is developing new, low-cost optical sensors that will use tunable diode laser absorption spectroscopy (TDLAS) for methane detection. While today’s optical sensors offer excellent sensitivity and selectivity, their high cost and power requirements prevent widespread adoption. To overcome these hurdles, IBM and its partners plan to produce a miniaturized, integrated, on-chip version that is less expensive and consumes less power. At a planned cost of about $300 per sensor, IBM’s sensors will be 10 to 100 times cheaper than TDLAS sensors on the market today. By advancing an affordable methane detection system that can be customized, IBM’s technology could enable producers to more efficiently locate and repair methane leaks, and therefore reduce overall methane emissions.
Potential Impact:
If successful, IBM will create low-cost, low-maintenance methane sensors that can be customized into a distributed methane detection system, giving operators greater flexibility to continuously monitor methane emissions.
Security:
Better methane detection technologies could improve the sustainability of domestic natural gas production and the safety of operations.
Environment:
Enhanced detection sensors could enable greater mitigation of methane leakage and lead to an overall reduction in harmful methane emissions associated with natural gas development.
Economy:
IBM’s sensors could exponentially lower the costs of methane detection and help accelerate the adoption of monitoring programs at the nation’s more than 480,000 producing natural gas wells.
Contact
ARPA-E Program Director:
Dr. Joseph King
Project Contact:
Dr. Norma Sosa
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
sosa@us.ibm.com
Related Projects
Release Date:
04/29/2014