Multi-modal Sensor Platform for Occupancy Detection

Default ARPA-E Project Image


Program:
SENSOR
Award:
$1,200,000
Location:
Syracuse, New York
Status:
ALUMNI
Project Term:
05/15/2018 - 05/31/2022

Technology Description:

Syracuse University will develop a sensor unit to detect occupancy in residential homes called MicroCam. The MicroCam system will be equipped with a very low-resolution camera sensor, a low-resolution infrared array sensor, a microphone, and a low-power embedded processor. These tools allow the system to measure shape/texture from static images, motion from video, and audio changes from the microphone input. The combination of these modalities can reduce error, since any one modality in isolation may be prone to missed detections or high false alarm rates. Advanced algorithms will translate these multiple data streams into actionable adjustments to home heating and cooling. The algorithms will be implemented locally on the sensor unit for a stand-alone solution not reliant on external computation units or cloud computing. The MicroCam system itself will be wireless and battery-powered (operating for at least 4.5 years on 3 AA or 2 C batteries), and will be designed to be easily installed and self-commissioned.

Potential Impact:

If successful, SENSOR projects will dramatically reduce the amount of energy needed to effectively heat, cool, and ventilate buildings without sacrificing occupant comfort.

Security:

Lower electricity consumption by buildings eases strain on the grid, helping to improve resilience and reduce demand during peak hours, when the threat of blackouts is greatest.

Environment:

Using significantly less energy could help reduce emissions attributed to power generation. In addition, improved interior air quality could help prevent negative effects on human health.

Economy:

Buildings will require less energy to operate, reducing heating, cooling, and ventilation costs for businesses and families. In addition, better controlled ventilation may lead to improved indoor air quality (ensured by an accurate occupant count, and validated via widespread CO2 detection) may lead to improved worker productivity and academic performance.

Contact

ARPA-E Program Director:
Dr. Marina Sofos
Project Contact:
Prof. Senem Velipasalar
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
svelipas@syr.edu

Partners

SRI International

Related Projects


Release Date:
01/18/2017