Plasma Guns for Magnetized Fuel Targets for PJMIF

Default ARPA-E Project Image


Program:
Exploratory Topics
Award:
$500,000
Location:
Chantilly , Virginia
Status:
ALUMNI
Project Term:
03/27/2020 - 03/26/2021

Critical Need:

This topic seeks to support entrepreneurial energy discoveries, by identifying and supporting disruptive concepts in energy-related technologies within small businesses and collaborations with universities and national labs. These projects have the potential for large-scale impact, and if successful could create new paradigms in energy technology with the potential to achieve significant reductions in U.S. energy consumption, energy-related imports, or energy-related emissions. These specific projects address technology areas across ARPA-E’s mission spaces, with particular focus on: Advanced bioreactors; Approaches and tools to create enhanced geothermal systems; Non-evaporative dehydration and drying technologies; Approaches to significantly enhance the rate and/or potential scale of carbon mineralization; Separation of CO2 from ambient air (direct air capture); High-rate separation of dissolved inorganic carbon from the ocean to produce a CO2 stream; Advanced trees and other engineered biological systems for carbon sequestration; Innovative deep ocean collector designs for mining polymetallic nodules; Environmental sensors capable of operation in deep ocean environments for mining polymetallic nodules; and Non-carbothermic smelting technologies. Awards under this topic are working to support research and establish potential new areas for technology development, while providing ARPA-E with information that could lead to new focused funding programs. The focus of these projects is to support exploratory research to establish viability, proof-of-concept demonstration for new energy technology, and/or modeling and simulation efforts to guide development for new energy technologies.

Project Innovation + Advantages:

HyperJet Fusion is advancing a potentially faster and cheaper approach to fusion energy that would result in reduced energy emissions. In plasma jet driven magneto-inertial fusion (PJMIF), an array of discrete supersonic plasma jets is used to form a spherically imploding plasma liner, which then compresses a magnetized plasma target to fusion conditions. HyperJet Fusion has been developing the plasma guns required for an experimental demonstration of the plasma liner formation. The proposed project focuses on developing the magnetized plasma target. The concept could potentially introduce an innovative and highly attractive reactor technology to the fusion energy landscape.

Contact

ARPA-E Program Director:
Dr. Robert Ledoux
Project Contact:
Doug Witherspoon
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
witherspoon@hyperjetfusion.com

Related Projects


Release Date:
05/20/2020