Renewables-Based Catalytic Ammonia Production

Default ARPA-E Project Image

Research Triangle Park, North Carolina
Project Term:
04/10/2017 - 10/09/2020

Technology Description:

Research Triangle Institute (RTI) will develop a catalytic technology for converting renewable energy, water, and air into ammonia. Their work focuses on three innovations: the development of an ammonia synthesis catalyst for improved reactions, refinement of the ammonia synthesis to handle intermittent loads, and optimized and scalable technologies for air separation to produce high-purity nitrogen. Their ammonia synthesis catalyst features increased surface area, high dispersion, and high thermal stability – enabling the system to operate at much lower temperatures and pressures, lowering energy consumption by 35%. It also reduces the balance of plant costs by simplifying the design and decreasing refrigeration loads. By using low-cost nitrogen purification techniques, they aim to lower the cost and amount of nitrogen required. When completed, the project will result in a small-scale ammonia synthesis system that is economically viable and can start and stop in synchronization with intermittent renewable power sources.

Potential Impact:

If successful, developments from REFUEL projects will enable energy generated from domestic, renewable resources to increase fuel diversity in the transportation sector in a cost-effective and efficient way.


The U.S. transportation sector is heavily dependent on petroleum for its energy. Increasing the diversity of energy-dense liquid fuels would bolster energy security and help reduce energy imports.


Liquid fuels created using energy from renewable resources are carbon-neutral, helping reduce transportation sector emissions.


Fuel diversity reduces exposure to price volatility. By storing energy in hydrogen-rich liquid fuels instead of pure hydrogen in liquid or gaseous form, transportation costs can be greatly reduced, helping make CNLFs cost-competitive with traditional fuels.


ARPA-E Program Director:
Dr. Grigorii Soloveichik
Project Contact:
Dr. Sameer Parvathikar
Press and General Inquiries Email:
Project Contact Email:

Related Projects

Release Date: