Renewables-Based Catalytic Ammonia Production

Default ARPA-E Project Image


Program:
REFUEL
Award:
$3,111,904
Location:
Research Triangle Park, North Carolina
Status:
ALUMNI
Project Term:
04/10/2017 - 10/09/2020

Critical Need:

Most liquid fuels used in transportation today are derived from petroleum and burned in internal combustion engines. These fuels are attractive because of their high energy density and current economics, but they remain partially reliant on imported petroleum and are highly carbon intensive. Domestically produced carbon-neutral liquid fuels (CNLFs), such as ammonia (NH3), can address both of these challenges. Chemical manufacturers commonly use the Haber-Bosch (HB) process to produce NH3 for use in agriculture or the chemical industry. The HB process involves first separating nitrogen (N2) from air, then breaking the very stable nitrogen-nitrogen bond, and finally combining the nitrogen atoms with hydrogen to form NH3. The HB process requires huge capital investments for reactors to operate at high pressure and temperature, large amounts of base-load power to keep the process running continuously (HB uses 1-2% of global energy), and distribution infrastructure to ship the resulting ammonia around the world. Technology enabling the small- and medium-scale synthesis of ammonia can move the production of the fuels closer to the consumer, and - if renewable sources are used - the fuels can be produced in a carbon neutral manner. However, significant technical challenges remain in either adapting the HB process for smaller scale use or developing alternative electrochemical processes for fuel development. New methods would also have to employ variable rates of production to match the intermittent generation of renewable sources. Improvements in these areas could dramatically reduce the energy and carbon intensity of liquid fuel production. By taking better advantage of intermittent renewable resources in low-population areas and transporting that energy as a liquid fuel to urban centers, we can more fully utilize domestically available resources.

Project Innovation + Advantages:

Research Triangle Institute (RTI) will develop a catalytic technology for converting renewable energy, water, and air into ammonia. Their work focuses on three innovations: the development of an ammonia synthesis catalyst for improved reactions, refinement of the ammonia synthesis to handle intermittent loads, and optimized and scalable technologies for air separation to produce high-purity nitrogen. Their ammonia synthesis catalyst features increased surface area, high dispersion, and high thermal stability – enabling the system to operate at much lower temperatures and pressures, lowering energy consumption by 35%. It also reduces the balance of plant costs by simplifying the design and decreasing refrigeration loads. By using low-cost nitrogen purification techniques, they aim to lower the cost and amount of nitrogen required. When completed, the project will result in a small-scale ammonia synthesis system that is economically viable and can start and stop in synchronization with intermittent renewable power sources.

Potential Impact:

If successful, developments from REFUEL projects will enable energy generated from domestic, renewable resources to increase fuel diversity in the transportation sector in a cost-effective and efficient way.

Security:

The U.S. transportation sector is heavily dependent on petroleum for its energy. Increasing the diversity of energy-dense liquid fuels would bolster energy security and help reduce energy imports.

Environment:

Liquid fuels created using energy from renewable resources are carbon-neutral, helping reduce transportation sector emissions.

Economy:

Fuel diversity reduces exposure to price volatility. By storing energy in hydrogen-rich liquid fuels instead of pure hydrogen in liquid or gaseous form, transportation costs can be greatly reduced, helping make CNLFs cost-competitive with traditional fuels.

Contact

ARPA-E Program Director:
Dr. Grigorii Soloveichik
Project Contact:
Dr. Sameer Parvathikar
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
sparvathikar@rti.org

Related Projects


Release Date:
12/15/2016