Synthetic Reserves from Distributed Flexible Resources
Technology Description:
General Electric (GE) Global Research along with its partners will develop a novel distributed flexibility resource (DFR) technology that aggregates responsive flexible loads and DERs to provide synthetic reserve services to the grid while maintaining customer quality-of-service. A key innovation of the project is to develop a forecast tool that will use short-term and real-time weather forecasts along with other data to estimate the reserve potential of aggregate loads and DERs. An optimization framework that will enable aggregation of large numbers of flexible loads and DERs and determine the optimal schedule to bid into the wholesale market will be designed. A scalable control and communication architecture will enable coordination and control of the resources in real-time based on a novel two-tier hierarchical optimal control algorithm.
Potential Impact:
If successful, projects included in the NODES Program will develop innovative hardware and software solutions to integrate and coordinate generation, transmission, and end-use energy systems at various points on the electric grid. These control systems will enable real-time coordination between distributed generation, such as rooftop and community solar assets and bulk power generation, while proactively shaping electric load. This will alleviate periods of costly peak demand, reduce wasted energy, and increase renewables penetration on the grid.
Security:
Innovations from this program would help the U.S. grid assimilate at least 50% of renewable generation and provide system reliability and resiliency while managing emerging energy generation and consumption patterns.
Environment:
The addition of flexible loads and DERs into the U.S. grid could offset 3.3 quads of thermal generation and displace 290 million tons of CO2 emissions.
Economy:
Using the NODES approach to integrate flexible loads and DERs into the grid could replace 4.5 GW of spinning reserves (i.e. generation capacity on stand-by in case of outages and unforeseen intermittency), a value of $3.3 billion per year. A more efficient and reliable grid would help protect U.S. businesses from costly power outages and brownouts.
Contact
ARPA-E Program Director:
Dr. Mario Garcia-Sanz
Project Contact:
Reza Ghaemi
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
Reza.Ghaemi@ge.com
Partners
Southern California Edison
Lawrence Berkeley National Laboratory
Related Projects
Release Date:
02/04/2015