Transformerless Converter Topology

Default ARPA-E Project Image


Program:
CIRCUITS
Award:
$2,956,351
Location:
Manteca, California
Status:
ALUMNI
Project Term:
01/17/2018 - 07/16/2022

Technology Description:

Opcondys will develop a high-voltage power converter design for energy storage systems connected directly to the power grid. Opcondys' converter design will use a modified switched multiplier topology that will allow connection to utility transmission lines without intervening step-up transformers. It uses a photonic, wide bandgap power switching device called the Optical Transconductance Varistor. This is a fast, high-voltage, bidirectional device which reduces the number of circuit elements required for charging and discharging the storage element. By operating at 100 kHz it is possible to increase efficiency to 99% compared to 95-98% efficiency of traditional converters. The system also reduces the size of the passive elements by 50% and, because of the optical control, mitigates electromagnetic interference issues. The elimination of step-up transformers further reduces system size, and can enable a lower cost than existing systems. If successful, project developments could open the door to increased integration of grid-level energy storage.

Potential Impact:

If successful, CIRCUITS projects will enable further development of a new class of power converters suitable for a broad range of applications including motor drives for heavy equipment and consumer appliances, electric vehicle battery charging, high-performance computer data centers, grid applications for stability and resilience, and emerging electric propulsion systems.

Security:

More robust power electronics that withstand higher operating temperatures, have increased durability, a smaller form factor, and higher efficiency will significantly improve the reliability and security of a resilient electrical grid.

Environment:

Low cost and highly efficient power electronics could lead to more affordable electric and hybrid-electric transportation, greater integration of renewable power sources, and higher efficiency electric motors for use in heavy industries and consumer applications.

Economy:

Electricity is the fastest growing form of end-use energy in the United States. High performance, low cost power electronics would enable significant efficiency gains across the economy, reducing energy costs for businesses and families.

Contact

ARPA-E Program Director:
Dr. Isik Kizilyalli
Project Contact:
Kristin Sampayan
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
kristinsa@opcondys.com

Related Projects


Release Date:
01/18/2017