Tunable Laser for Methane Detection

Tunable Laser for Methane Detection


Program:
MONITOR
Award:
$1,900,073
Location:
Jessup, Maryland
Status:
ALUMNI
Project Term:
06/02/2015 - 12/01/2018

Technology Description:

Maxion Technologies is partnering with Thorlabs Quantum Electronics (TQE), Praevium Research, and Rice University to develop a low cost, tunable, mid-infrared (mid-IR) laser source to be used in systems for detecting and measuring methane emissions. The new architecture is planned to reduce the cost of lasers capable of targeting methane optical absorption lines near 3.3 microns, enabling the development of affordable, high sensitivity sensors. The team will combine Praevium and TQE’s state-of-the-art Micro-Electro-Mechanical-System tunable Vertical Cavity Surface Emitting Laser (MEMS-VCSEL) technology with an Interband Cascade Laser (ICL) active core developed by Maxion. The unique design offers advantages in manufacturing that are expected to yield a factor-of-40 reduction in the cost of the laser source, and the wide tunability will allow the same laser design to be shared across multiple applications. When integrated with a full methane detection system, this technology could enable significant reduction in the cost associated with identifying, quantifying, and locating methane leaks as compared to currently available technologies.

Potential Impact:

If successful, Maxion’s laser could be a useful component of more cost-effective and accurate methane monitoring systems for natural gas producers.

Security:

Better methane detection technologies could improve the sustainability of domestic natural gas production and the safety of operations.

Environment:

Enhanced detection sensors could enable greater mitigation of methane leakage and lead to an overall reduction in harmful methane emissions associated with natural gas development.

Economy:

Maxion’s laser will be less expensive to manufacture, helping to lower the cost of methane monitoring.

Contact

ARPA-E Program Director:
Dr. Joseph King
Project Contact:
Dr. Stephen Segal
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
SSegal@thorlabs.com

Related Projects


Release Date:
04/29/2014