Ultra-Efficient Intelligent MVDC Hybrid Circuit Breaker



Program:
BREAKERS
Award:
$4,413,913
Location:
Cleveland ,
Ohio
Status:
ACTIVE
Project Term:
09/05/2019 - 09/04/2022
Website:

Critical Need:

Today’s power grid relies primarily on alternating-current (AC) electricity as opposed to direct-current (DC). DC has advantages over AC such as lower distribution losses, higher power carrying capacity, and reduced conductor materials, which make it well suited to industrial applications, transportation, and energy production. However, the risk associated with electrical faults, such as short circuits, and system overloads, continues to hinder the growth of DC markets. Inherently, AC electricity periodically alternates direction, providing a brief “zero crossing,” where no current flows. This characteristic allows electrical faults to be interrupted by conventional electro-mechanical breakers. DC networks deliver power without zero crossings, which make conventional circuit breakers ineffectual in fault scenarios. To fully benefit from medium voltage (MV) DC usage, fast, highly reliable, scalable breakers must be developed for commercial deployment.

Project Innovation + Advantages:

Eaton will build an ultra-high efficiency, medium voltage direct current (MVDC), electro-mechanical/solid-state hybrid circuit breaker (HCB) that offers both low conduction losses and fast response times. The team will also develop a high-speed actuator/vacuum switch (HSVS) combined with a novel transient commutation current injector (TCCI). This switch will transfer power to a separate solid-state device, interrupting the current in the event of a fault. The design should allow for scaling in voltage and current, enabling a range of circuit breakers across the MV application space.

Potential Impact:

The proposed breaker is installed close to loads to rapidly detect and react to the short-circuit fault. Thus, it could enable an increased number of electronic loads that operate using DC, such as ultra-fast electric vehicle charging stations and utility scale energy storage battery units, to connect to the MV distribution grid. This would improve overall power delivery efficiency.

Security:

DC circuit breakers respond significantly faster than their AC counterparts, enabling prompt isolation and protection of assets from electrical faults. MVDC circuit breakers and grids enable greater resiliency to cyber and other attacks through targeted isolation of affected nodes.


Environment:

MVDC breaker-enabled microgrids could facilitate greater deployment and adoption of distributed renewable resources, greatly reducing power sector emissions. Electrification of transportation (e.g., ships, aviation) with DC systems would also reduce emissions.

Economy:

Proliferation of MVDC systems protected by more effective DC circuit breakers could drive higher energy efficiency, lower equipment costs, and bolster grid resiliency.

Contact

ARPA-E Program Director:
Dr. Isik Kizilyalli
Project Contact:
Steve Schmalz
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
SteveSchmalz@eaton.com

Partners

National Energy Technology Laboratory
Virginia Polytechnic Institute and State University
Illinois Institute of Technology

Related Projects


Release Date:
09/12/2018