Wide-Bandgap Semiconductor Amplifiers for Plasma Heating and Control
Technology Description:
Fusion power plants will need efficient, high-power electrical drivers for plasma heating, compression, and control. Wide-bandgap (WBG) semiconductor devices and innovative amplifiers may speed up the development of high-power fusion systems and reduce their eventual levelized cost of electricity. Princeton Fusion Systems will develop integrated, power-dense, reliable, and scalable power amplifier boards for plasma heating and control applications using WBG silicon carbide devices and employ advanced cooling. Individual boards will be capable of delivering more than 10 kW of power. The boards will be designed so that multiple boards of this power level can replace less-efficient devices currently in use to reduce the overall cost and make the machines more reliable. The project will design, test, and qualify individual circuit boards as the building blocks for various short-pulse, long-pulse, and continuous-wave electrical-driver power supplies for fusion-energy systems.
Potential Impact:
Successful development of fusion energy science and technology could lead to a safe, carbon-free, abundant energy source for developed and emerging economies.