Displaying 1101 - 1113 of 1113

Status: ACTIVE
State: MA
Project Term: -
Program: MARINER

Woods Hole Oceanographic Institution

Monitoring Macroalgae Using Acoustics and UUV

The Woods Hole Oceanographic Institution will lead a MARINER Category 4 project to develop an autonomous unmanned underwater vehicle (UUV) system for monitoring large-scale seaweed farms for extended periods. Compared to more costly human labor and boat operations, UUV systems present an attractive option for consistent, daily monitoring of large-scale, offshore seaweed farms. The system will routinely survey and quantify key parameters such as infrastructure health, macroalgae growth rate, and nutrient content of the water. An upward/downward split-beam acoustic echosounder will use sonar…


Status: ACTIVE
State: CA
Project Term: -
Program: ASCEND

Wright Electric

2nd Generation Motor for Large Electric Aircraft Propulsion Systems

Wright Electric will design a high-efficiency and torque-dense electric powertrain that combines innovations in integrated cooling, power electronics, and rotor design. Co-developing these critical elements will enable Wright to achieve the target efficiency and weight metric and lead to a scalable solution. The design will create a high-performance motor without sacrificing safety or the use of existing manufacturing techniques. The team plans to use an aggressive in-slot cooling strategy coupled with a high-frequency inverter whose efficiency may exceed 99.5%. The unique innovations across…


Status: ACTIVE
State: TX
Project Term: -
Program: ATLANTIS

WS Atkins

Scale Model Experiments for Co-Designed FOWTs Supporting a High-Capacity (15-MW) Turbine

WS Atkins will focus on generating experimental data that can be used to validate computer programs and new technologies developed for FOWT applications. The team will conduct experiments of 15-MW (megawatt) wind turbine scale models in world-class test facilities to assess the behavior of conventional and unconventional FOWT structures with advanced solutions. The WS Atkins team will make their data accessible to ATLANTIS project members and the public to facilitate benchmarking of new designs, accurate calibration of computer tools, and a FOWT database for future research.


Status: ACTIVE
State: MD
Project Term: -
Program: GEMINA

X-Energy

Advanced Operation & Maintenance Techniques Implemented in the Xe-100 Plant Digital Twin to Reduce Fixed O&M Cost

X-energy’s digital twin project aims to reduce the fixed O&M cost of its advanced nuclear reactor design to $2/MWh. The project will use human factors engineering, probabilistic risk assessment, hazard analysis, and security and maintenance evaluations to identify areas for optimization. X-energy will develop innovative ways to leverage advanced technologies—including automation, robotics, remote and centralized maintenance, and monitoring—to optimize staffing plans while ensuring optimal plant operation. The team will develop two virtual modeling frameworks to evaluate and validate these…


Status: ACTIVE
State: WA
Project Term: -
Program: Special Projects

XFlow Energy

Low-Cost Wind Energy Through Dense VAWT Arrays: Fatigue Loads and Power Performance Risk Mitigation

The proposed technology will boost the power production and increase the density of utility wind farms, resulting in at least a 23% reduction in levelized cost of energy (LCOE) from the wind. The flow dynamics of vertical-axis wind turbines (VAWTs) enable constructive interactions between rotors in a wind farm, increasing power up to 30% over non-interacting turbines, and increasing VAWT density per unit land-area an order of magnitude compared with state-of-the-art wind farms. XFlow Energy Company (XFlow) will perform simulations to examine the impacts of close turbine spacing on rotor…


Status: ALUMNI
State: MA
Project Term: -
Program: BEEST

Xilectric

Reinventing the Edison Battery

Xilectric is developing a totally new class of low-cost rechargeable batteries with a chemistry analogous to the original nickel-iron Edison battery. At the turn of the 20th century, Thomas Edison experimented with low-cost, durable nickel-iron aqueous batteries for use in EVs. Given their inability to operate in cold weather and higher cost than lead-acid batteries, Edison’s batteries were eventually dismissed for automotive applications. Xilectric is reviving and re-engineering the basic chemistry of the Edison battery, using domestically abundant, environmentally friendly, and low-cost…


Status: ALUMNI
State: CT
Project Term: -
Program: FOCUS

Yale University

High-Temperature Dual-Junction Topping Cells

Yale University is developing a dual-junction solar cell that can operate efficiently at temperatures above 400 °C, unlike today’s solar cells, which lose efficiency rapidly above 100°C and are likely to fail at high temperatures over time. Yale’s specialized dual-junction design will allow the cell to extract significantly more energy from the sun at high temperature than today’s cells, enabling the next generation of hybrid solar converters to deliver much higher quantities of electricity and highly useful dispatchable heat. Heat rejected from the cells at high temperature can be stored and…


Status: ALUMNI
State: CT
Project Term: -
Program: OPEN 2012

Yale University

Closed-Loop System Using Waste Heat for Electricity

Yale University is developing a system to generate electricity using low-temperature waste heat from power plants, industrial facilities, and geothermal wells. Low-temperature waste heat is a vast, mostly untapped potential energy source. Yale’s closed loop system begins with waste heat as an input. This waste heat will separate an input salt water stream into two output streams, one with high salt concentration and one with low salt concentration. In the next stage, the high and low concentration salt streams will be recombined. Mixing these streams releases energy which can then be captured…


Status: ACTIVE
State: CT
Project Term: -
Program: PNDIODES

Yale University

Selective Area Growth for Vertical Power Electronics

Yale University will conduct a comprehensive investigation to overcome the barriers in selective area doping of gallium nitride (GaN) through an epitaxial regrowth process for high-performance, reliable GaN vertical transistors. Transistors based on GaN have emerged as promising candidates for future high efficiency, high power applications, but they have been plagued by poor electrical performance attributed to the existing selective doping processes. The team will demonstrate vertical GaN diodes through a selective area regrowth processes with performance similar to those made using current…


Status: CANCELLED
State: TN
Project Term: -
Program: MEITNER

Yellowstone Energy

Reactivity Control Device for Advanced Reactors

Yellowstone Energy will develop a new passive control technology to enhance safety and reduce nuclear power plant costs. The team's Reactivity Control Device (RCD) will integrate with the Yellowstone Energy Molten Nitrate Salt Reactor and other advanced reactor designs. The RCD will use fluid embedded in the reactor’s control rods to control reaction rates at elevated temperatures, even in the absence of external controls. As the heating from fission increases or decreases, the fluid density will automatically and passively respond to control the system. The RCD’s passive control is…


Status: ACTIVE
State: MI
Project Term: -
Program: OPEN 2015

Zakuro

Transitioning Advanced Ceramic Electrolytes into Manufacturable Solid-State EV Batteries

This endeavor continues an OPEN 2015 project, focusing on scaling the technology initially developed by the University of Michigan from lab to pilot scale. Zakuro LLC (Zakuro) will develop a solid state battery using lithium lanthanum zirconate (LLZO), which is a ceramic electrolyte that contains no flammable liquid. LLZO is manufactured with a lithium-free anode, which substantially simplifies assembly. Zakuro aims to scale up production of the ceramic electrolyte pellets from a lab-scale batch process to an industry-standard, roll-to-roll process to enable efficient application of the…


Status: ACTIVE
State: WA
Project Term: -
Program: BETHE

Zap Energy

Sheared Flow Stabilized Z-Pinch Performance Improvement

A Z-pinch fusion device has an electrical current driven through the fusion fuel, creating self-generated magnetic fields that compress and heat the fuel toward fusion conditions. While a Z-pinch with no equilibrium flows has rapidly growing instabilities that disrupt the plasma within nanoseconds, the Z-pinch can be stabilized if an axial plasma flow varying strongly enough with radius is introduced. This sheared-flow stabilized (SFS) Z-pinch may be the simplest and most compact of all known controlled-fusion approaches, as it does not require magnetic coils nor any external heating systems…


Status: ACTIVE
State: WA
Project Term: -
Program: OPEN 2018

Zap Energy

Electrode Technology Development for the Sheared-Flow Z-Pinch Fusion Reactor

Zap Energy will advance the fusion performance of the sheared-flow stabilized (SFS) Z-pinch fusion concept. While the simplicity of the Z-pinch is attractive, it has been plagued by plasma instabilities. Like traditional Z-pinch approaches, the SFS Z-pinch drives electrical current through a plasma to create magnetic fields that compress and heat the plasma toward fusion conditions. The innovation of the SFS Z-pinch is the velocity gradient across the radius of the Z-pinch—in other words, the outer edge of the plasma column is moving at a different velocity than the center—which stabilizes…