Displaying 251 - 300 of 1054

Status: ACTIVE
State: CT
Project Term: -
Program: DIFFERENTIATE

General Electric (GE) Global Research

IMPACT: Design of Integrated Multi-physics, Producible Additive Components for Turbomachinery

GE Research will develop design optimization tools for the laser powder bed fusion based additive manufacturing of turbomachinery components. The team will integrate the latest advances in multi-physics topology optimization with fast machine learning-based producibility evaluations extracted from large training datasets comprising high-fidelity physics-based simulations and experimental validation studies. The integrated methodology will be used to demonstrate simultaneous improvements in the producibility and thermodynamic efficiency of a multi-physics turbomachinery component. Improved…


Status: ALUMNI
State: CT
Project Term: -
Program: FOCUS

General Electric (GE) Global Research

Electrochemical Energy Storage with a Supercritical CO2 Cycle

GE is designing and testing components of a turbine system driven by high-temperature, high-pressure carbon dioxide (CO2) to develop a more durable and efficient energy conversion system. Current solar energy system components break down at high temperatures, shortening the system’s cycle life. GE’s energy storage system stores heat from the sun in molten salt at moderate temperature and uses surplus electricity from the grid to create a phase change heat sink, which helps manage the temperature of the system. Initially, the CO2 remains at a low temperature and low pressure to enable more…


Status: ALUMNI
State: CT
Project Term: -
Program: GENI

General Electric (GE) Global Research

Connecting Renewables Directly to the Grid

General Electric (GE) Global Research is developing electricity transmission hardware that could connect distributed renewable energy sources, like wind farms, directly to the grid—eliminating the need to feed the energy generated through intermediate power conversion stations before they enter the grid. GE is using the advanced semiconductor material silicon carbide (SiC) to conduct electricity through its transmission hardware because SiC can operate at higher voltage levels than semiconductors made out of other materials. This high-voltage capability is important because electricity must…


Status: ALUMNI
State: CT
Project Term: -
Program: GENI

General Electric (GE) Global Research

Cost-Effective Cable Insulation

General Electric (GE) Global Research is developing new, low-cost insulation for high-voltage direct current (HVDC) electricity transmission cables. The current material used to insulate HVDC transmission cables is very expensive and can account for as much as 1/3 of the total cost of a high-voltage transmission system. GE is embedding nanomaterials into specialty rubber to create its insulation. Not only are these materials less expensive than those used in conventional HVDC insulation, but also they will help suppress excess charge accumulation. The excess charge left behind on a cable…


Status: ACTIVE
State: CT
Project Term: -
Program: HITEMMP

General Electric (GE) Global Research

Ultra Performance Heat Exchanger Enabled by Additive Technology (UPHEAT)

The GE-led team will develop a metallic-based, ultra-performance heat exchanger enabled by additive manufacturing technology and capable of operation at 900°C (1652°F) and 250 bar (3626 psi). The team will optimize heat transfer versus thermomechanical load using new micro-trifurcating core structures and manifold designs. The team will leverage a novel, high-temperature capable, crack-resistant nickel superalloy, designed specifically for additive manufacturing. When completed, the heat exchanger could enable increased thermal efficiency of indirect heated power cycles such as supercritical…


Status: ALUMNI
State: CT
Project Term: -
Program: IMPACCT

General Electric (GE) Global Research

CO2 Capture with Liquid-to-Solid Absorbents

General Electric (GE) Global Research and the University of Pittsburgh are developing a unique CO2 capture process in which a liquid absorbent changes into a solid upon contact with CO2. Once in solid form, the material can be separated and the CO2 can be released for storage by heating. Upon heating, the absorbent returns to its liquid form, where it can be reused to capture more CO2. The approach is more efficient than other solvent-based processes because it avoids the heating of extraneous solvents such as water. This ultimately leads to a lower cost of CO2 capture and will lower the…


Status: ALUMNI
State: CT
Project Term: -
Program: MONITOR

General Electric (GE) Global Research

Optical Fibers for Methane Detection

General Electric (GE) Global Research will partner with Virginia Tech to design, fabricate, and test a novel, hollow core, microstructured optical fiber for long path-length transmission of infrared radiation at methane absorption wavelengths. GE will drill micrometer-sized side-holes to allow gases to penetrate into the hollow core. The team will use a combination of techniques to quantify and localize the methane in the hollow core. GE’s plans to develop fibers that can be designed to fit any natural gas system, providing flexibility to adapt to the needs of a monitoring program in a wide…


Status: CANCELLED
State: CT
Project Term: -
Program: MOVE

General Electric (GE) Global Research

Chilled Natural Gas for At-Home Refueling

General Electric (GE) Global Research is developing a low-cost, at-home natural gas refueling system that reduces fueling time and eliminates compression stages. Traditional compressor-based natural gas refueling systems require removal of water from natural gas through complicated desiccant cycles to avoid damage. GE's design uses a chiller to cool the gas to a temperature below -50°C, which would separate water and other contaminants from the natural gas. This design has very few moving parts, will operate quietly, and will be virtually maintenance-free. This simplified, compressor-free…


Status: ALUMNI
State: CT
Project Term: -
Program: NODES

General Electric (GE) Global Research

Synthetic Reserves from Distributed Flexible Resources

General Electric (GE) Global Research along with its partners will develop a novel distributed flexibility resource (DFR) technology that aggregates responsive flexible loads and DERs to provide synthetic reserve services to the grid while maintaining customer quality-of-service. A key innovation of the project is to develop a forecast tool that will use short-term and real-time weather forecasts along with other data to estimate the reserve potential of aggregate loads and DERs. An optimization framework that will enable aggregation of large numbers of flexible loads and DERs and determine…


Status: ALUMNI
State: CT
Project Term: -
Program: OPEN 2009

General Electric (GE) Global Research

Nanocomposite Magnets

General Electric (GE) Global Research is using nanomaterials technology to develop advanced magnets that contain fewer rare earth materials than their predecessors. Nanomaterials technology involves manipulating matter at the atomic or molecular scale, which can represent a stumbling block for magnets because it is difficult to create a finely grained magnet at that scale. GE is developing bulk magnets with finely tuned structures using iron-based mixtures that contain 80% less rare earth materials than traditional magnets, which will reduce their overall cost. These magnets will enable…


Status: ALUMNI
State: CT
Project Term: -
Program: OPEN 2012

General Electric (GE) Global Research

High-Power Gas Tube Switches

General Electric (GE) Global Research is developing a new gas tube switch that could significantly improve and lower the cost of utility-scale power conversion. A switch breaks an electrical circuit by interrupting the current or diverting it from one conductor to another. To date, solid state semiconductor switches have completely replaced gas tube switches in utility-scale power converters because they have provided lower cost, higher efficiency, and greater reliability. GE is using new materials and innovative designs to develop tubes that not only operate well in high-power conversion,…


Status: ALUMNI
State: CT
Project Term: -
Program: OPEN 2015

General Electric (GE) Global Research

Silicon Carbide Superjunction

The team led by General Electric (GE) Global Research will develop a new high-voltage, solid-state Silicon Carbide (SiC) Field–Effect Transistor (FET) charge-balanced device, also known as a “Superjunction.” These devices have become the industry norm in high-voltage Silicon switching devices, because they allow for more efficient switching at higher voltages and frequencies. The team proposes to demonstrate charge balanced SiC devices for the first time. Their approach will offer scaling up to 15kV while reducing losses for power conversion applications by 10x when compared with existing…


Status: ACTIVE
State: CT
Project Term: -
Program: OPEN 2018

General Electric (GE) Global Research

Advanced Medium Voltage SiC-SJ FETs with Ultra-Low On-resistance

GE Global Research will develop a device architecture for the world’s first high-voltage silicon carbide (SiC) super junction (SJ) field-effect transistors. These devices will provide highly efficient power conversion (such as from direct to alternating current) in medium voltage applications, including renewables like solar and wind power, as well as transportation. The transistors will scale to high voltage while offering up to 10 times lower losses compared to commercial silicon-based transistors available today.


Status: ACTIVE
State: NY
Project Term: -
Program: GEMINA

General Electric (GE) Global Research

AI-Enabled Predictive Maintenance Digital Twins for Advanced Nuclear Reactors

Advanced reactors must be designed to be financially competitive with fossil fuel power plants to gain a foothold in future energy markets. The GE Research team aims to reduce operations and maintenance (O&M) costs by moving from a time- to condition-based predictive maintenance framework, using GE Hitachi's BWRX-300 boiling water reactor as the reference design. GE will develop operational, health, and decision predictive maintenance digital twins (PMDTs) to enable continuous monitoring, early warning, diagnostics, and prognostics for the reactor systems. The team will develop a “…


Status: ACTIVE
State: CT
Project Term: -
Program: ASCEND


Status: ACTIVE
State: CT
Project Term: -
Program: REPAIR

General Electric (GE) Global Research

PipeLine Underground Trenchless Overhaul (PLUTO)

General Electric (GE) Global Research will develop PipeLine Underground Trenchless Overhaul (PLUTO)—a long-distance, minimally invasive pipe repair system that provides structural rehabilitation of gas pipelines faster, more efficiently, and less expensively than traditional open-cut excavation replacement. The GE team, including Warren Environmental and Garver, will develop and integrate a highly dexterous long-range pipe-crawling (robotic) system, high-speed non-destructive evaluation technologies, and advanced spray-on thick-coating epoxy lining systems. The PLUTO system will provide…


Status: CANCELLED
State: CT
Project Term: -
Program: OPEN 2012

General Electric (GE) Power & Water

Fabric-Based Wind Turbine Blades

General Electric (GE) Power & Water is developing fabric-based wind turbine blades that could significantly reduce the production costs and weight of the blades. Conventional wind turbines use rigid fiberglass blades that are difficult to manufacture and transport. GE will use tensioned fabric uniquely wrapped around a spaceframe blade structure, a truss-like, lightweight rigid structure, replacing current clam shell wind blades design. The blade structure will be entirely altered, allowing for easy access and repair to the fabric while maintaining conventional wind turbine performance.…


Status: ALUMNI
State: CT
Project Term: -
Program: RANGE

General Electric (GE) Power & Water

Water-Based Flow Battery for EVs

General Electric (GE) Power & Water is developing an innovative, high-energy chemistry for a water-based flow battery. A flow battery is an easily rechargeable system that stores its electrode--the material that provides energy--as liquid in external tanks. Flow batteries have typically been used in grid-scale storage applications, but their flexible design architecture could enable their use in vehicles. To create a flow battery suitable for EVs, GE will test new chemistries with improved energy storage capabilities and built a working prototype. GE’s water-based flow battery would be…


Status: ACTIVE
State: MI
Project Term: -
Program: NEXTCAR

General Motors (GM)

InfoRich VD&PT Controls

General Motors will lead a team to develop "InfoRich" vehicle technologies that will combine advances in vehicle dynamic and powertrain control technologies with recent vehicle connectivity and automation technologies. The result will be a light duty gasoline vehicle that demonstrates greater than 20% fuel consumption reduction over current production vehicles while meeting all safety and exhaust emissions standards. On-board sensors and connected data will provide the vehicle with additional information such as the status of a traffic signal before a vehicle reaches an intersection…


Status: ALUMNI
State: MI
Project Term: -
Program: OPEN 2009

General Motors (GM)

Waste Heat Recovery System

General Motors (GM) is using shape memory alloys that require as little as a 10°C temperature difference to convert low-grade waste heat into mechanical energy. When a stretched wire made of shape memory alloy is heated, it shrinks back to its pre-stretched length. When the wire cools back down, it becomes more pliable and can revert to its original stretched shape. This expansion and contraction can be used directly as mechanical energy output or used to drive an electric generator. Shape memory alloy heat engines have been around for decades, but the few devices that engineers have built…


Status: ALUMNI
State: VA
Project Term: -
Program: ADEPT

GeneSiC Semiconductor

Utility-Scale Silicon Carbide Semiconductor

GeneSiC Semiconductor is developing an advanced silicon-carbide (SiC)-based semiconductor called an anode-switched thyristor. This low-cost, compact SiC semiconductor conducts higher levels of electrical energy with better precision than traditional silicon semiconductors. This efficiency will enable a dramatic reduction in the size, weight, and volume of the power converters and the electronic devices they are used in. GeneSiC is developing its SiC-based semiconductor for utility-scale power converters. Traditional silicon semiconductors can’t process the high voltages that utility-scale…


Status: ALUMNI
State: VA
Project Term: -
Program: IDEAS

GeneSiC Semiconductor

Novel Gallium Nitride Transistors

GeneSiC Semiconductor will lead a team to develop high-power and voltage (1200V) vertical transistors on free-standing gallium nitride (GaN) substrates. Bipolar junction transistors amplify or switch electrical current. NPN junction transistors are one class of these transistors consisting of a layer of p-type semiconductor between two n-type semiconductors. The output electrical current between two terminals is controlled by applying a small input current at the third terminal. The proposed effort combines the latest innovations in device designs/process technology, bulk GaN substrate…


Status: ALUMNI
State: DC
Project Term: -
Program: IDEAS

George Washington University (GWU)

Transfer Printed Virtual Substrates

George Washington University (GWU) will develop a new technique to produce commercial III-V substrates called Transfer Printed Virtual Substrates (TPVS). To reduce costs, the team proposes using a single source substrate to grow numerous virtual substrate layers. The team will use an enabling technology, called micro-transfer printing (MTP), to transfer the layers from the source substrate, in the form of many microscale “chiplets,” and deposit them onto a low-cost handle (silicon, for example). Once printed, the clean surfaces of the MTP process allows each chiplet to complete the epitaxial…


Status: ALUMNI
State: DC
Project Term: -
Program: MOSAIC

George Washington University (GWU)

Micro-Scale Ultra-High Efficiency CPV/Diffuse Hybrid Arrays Using Transfer Printing

George Washington University (GWU) and their partners will develop a hybrid CPV concept that combines highly efficient multi-junction solar cells and low-cost single-junction solar cells. When direct sunlight hits the lens array, it is concentrated 1000-fold and is focused onto the multi-junction solar cells. Diffuse light not captured in this process is instead captured by the low-cost single-junction solar cells. The module design is lightweight, fewer than 10 mm thick, and has a profile similar to conventional FPV. Moreover, the combination of the two types of cells increases efficiency.…


Status: ACTIVE
State: GA
Project Term: -
Program: Special Projects

Georgia Institute of Technology

Development of an Advanced Ultrasonic Phased Array For The Characterization of Thick, Reinforced Concrete Components

Develop phased array technology to enable “medical quality” imaging and characterization of thick reinforced concrete components. This early detection technology could prioritize maintenance to avoid macrocrack formation which could significantly increase the durability of existing concrete components, reducing lifecycle energy and emissions costs.


Status: ACTIVE
State: GA
Project Term: -
Program: FLECCS

Georgia Institute of Technology

Positive Power with Negative Emissions: Flexible NGCC Enabled by Modular Direct Air Capture

The Georgia Institute of Technology (Georgia Tech) will develop a modular direct air capture (DAC) process to be integrated with flexible natural gas-fired combined cycle (NGCC) power plants. This approach couples CO2 emissions capture from the NGCC plant using conventional technology with a novel design based on materials capable of removing CO2 from the air. The NGCC plant will run continuously, and the conventional technology will perform at its most efficient level. Steam and power from the natural gas plant are directed to remove CO2 from the atmosphere in times of low demand. The…


Status: ALUMNI
State: GA
Project Term: -
Program: ADEPT

Georgia Tech Research Corporation

Compact, Low-Profile Power Converters

Georgia Tech Research Corporation is creating compact, low-profile power adapters and power bricks using materials and tools adapted from other industries and from grid-scale power applications. Adapters and bricks convert electrical energy into usable power for many types of electronic devices, including laptop computers and mobile phones. These converters are often called wall warts because they are big, bulky, and sometimes cover up an adjacent wall socket that could be used to power another electronic device. The magnetic components traditionally used to make adapters and bricks have…


Status: ALUMNI
State: GA
Project Term: -
Program: ADEPT

Georgia Tech Research Corporation

Utility-Scale Power Router

Georgia Tech Research Corporation is developing a cost-effective, utility-scale power router that uses an enhanced transformer to more efficiently direct power on the grid. Existing power routing technologies are too expensive for widespread use, but the ability to route grid power to match real-time demand and power outages would significantly reduce energy costs for utilities, municipalities, and consumers. Georgia Tech is adding a power converter to an existing grid transformer to better control power flows at about 1/10th the cost of existing power routing solutions. Transformers convert…


Status: ALUMNI
State: GA
Project Term: -
Program: BEETIT

Georgia Tech Research Corporation

Innovative Miniaturized Heat Pumps for Buildings

Georgia Tech Research Corporation is using innovative components and system design to develop a new type of absorption heat pump. Georgia Tech's new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in micro-scale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of micro-scale passages allows for miniaturization of systems that can…


Status: ACTIVE
State: GA
Project Term: -
Program: BREAKERS

Georgia Tech Research Corporation

EDISON - Efficient DC Interrupter with Surge Protection

Georgia Tech is developing a novel hybrid direct current (DC) circuit breaker that could enable multi-terminal DC power systems. The breaker’s mechanical switch enables switching speeds 10 times faster than existing technology, severing the mechanical linkage, while the power electronics-based circuit handles the fault current. A new configuration of the fast switch and solid-state devices/circuits will reduce steady-state losses compared to state-of-the-art hybrid circuit breakers. A new control scheme dramatically reduces the peak fault current levels, enabling more compact packaging and…


Status: ACTIVE
State: GA
Project Term: -
Program: CIRCUITS

Georgia Tech Research Corporation

Modular Solid State Transformers

Georgia Tech Research Corporation and its project team will develop a solid-state transformer for medium-voltage grid applications using silicon carbide with a focus on compact size and high-performance. Traditional grid connected transformers have been used for over 100 years to 'step down' higher voltage to lower voltage. Higher voltages allows for delivery of power over longer distances and lower voltages keeps consumers safe. But traditional distribution transformers lack integrated sensing, communications, and controls. They also lack the ability to control the voltage, current,…


Status: ALUMNI
State: GA
Project Term: -
Program: GENI

Georgia Tech Research Corporation

Autonomous, Decentralized Grid Architecture

Georgia Tech Research Corporation is developing a decentralized, autonomous, internet-like control architecture and control software system for the electric power grid. Georgia Tech's new architecture is based on the emerging concept of electricity prosumers—economically motivated actors that can produce, consume, or store electricity. Under Georgia Tech's architecture, all of the actors in an energy system are empowered to offer associated energy services based on their capabilities. The actors achieve their sustainability, efficiency, reliability, and economic objectives, while…


Status: ACTIVE
State: GA
Project Term: -
Program: GRID DATA

Georgia Tech Research Corporation

High-fidelity, Large-scale, Realistic Dataset Development

Georgia Tech will generate publicly releasable large-scale, high-fidelity datasets using techniques developed under GRID DATA funding (the team was originally funded as the University of Michigan). These datasets will be based on the RTE transmission system and conform to the technical and mathematical requirements of the Grid Optimization (GO) Competition’s Challenge 2, which focuses on the security-constrained optimal power flow (SCOPF) problem. SCOPF takes preventive and corrective scenarios into account. Georgia Tech will validate the feasibility and realism of these datasets to ensure…


Status: ALUMNI
State: GA
Project Term: -
Program: IDEAS

Georgia Tech Research Corporation

Hollow Fibers for Separations

Georgia Tech Research Corporation will develop hollow fiber membranes containing metal-organic framework (MOF) thin films to separate propylene from propane. The nanoporous MOF film is supported on the inside surfaces of the tubular polymeric hollow fibers. Chemicals introduced into the center of the tube are separated through the MOF membrane by a molecular sieving process. Traditional olefin production processes are performed at pressures up to 20 bar, requiring large energy and capital costs. A key feature of the team’s technology is the ability to synthesize membranes at near-ambient…


Status: ALUMNI
State: GA
Project Term: -
Program: IMPACCT

Georgia Tech Research Corporation

Composite Membranes for CO2 Capture

A team of six faculty members at Georgia Tech Research Corporation is developing an enhanced membrane by fitting metal organic frameworks, compounds that show great promise for improved carbon capture, into hollow fiber membranes. This new material would be highly efficient at removing CO2 from the flue gas produced at coal-fired power plants. The team is analyzing thousands of metal organic frameworks to identify those that are most suitable for carbon capture based both on their ability to allow coal exhaust to pass easily through them and their ability to select CO2 from that exhaust for…


Status: ALUMNI
State: GA
Project Term: -
Program: OPEN 2012

Georgia Tech Research Corporation

High-Efficiency Solar Fuel Reactor

Georgia Tech Research Corporation is developing a high-efficiency concentrating solar receiver and reactor for the production of solar fuels. The team will develop a system that uses liquid metal to capture and transport heat at much higher temperatures compared to state-of-the-art concentrating solar power facilities. This high temperature system will be combined with the team’s novel reactor to produce solar fuels that allow the flexibility to store and transport solar energy for later use or for immediate power production. Higher temperatures should result in much higher efficiencies and…


Status: ALUMNI
State: GA
Project Term: -
Program: OPEN 2012

Georgia Tech Research Corporation

Graphene-Based Supercapacitors

Georgia Tech Research Corporation is developing a supercapacitor using graphene—a two-dimensional sheet of carbon atoms—to substantially store more energy than current technologies. Supercapacitors store energy in a different manner than batteries, which enables them to charge and discharge much more rapidly. The Georgia Tech team approach is to improve the internal structure of graphene sheets with ‘molecular spacers,’ in order to store more energy at lower cost. The proposed design could increase the energy density of the supercapacitor by 10–15 times over established capacitor technologies…


Status: ALUMNI
State: GA
Project Term: -
Program: OPEN 2012

Georgia Tech Research Corporation

Power Generation Using Solar-Heated Ground Air

Georgia Tech Research Corporation is developing a method to capture energy from wind vortices that form from a thin layer of solar-heated air along the ground. “Dust devils” are a random and intermittent example of this phenomenon in nature. Naturally, the sun heats the ground creating a thin air layer near the surface that is warmer than the air above. Since hot air rises, this layer of air will naturally want to rise. The Georgia Tech team will use a set of vanes to force the air to rotate as it rises, forming an anchored columnar vortex that draws in additional hot air to sustain itself.…


Status: ACTIVE
State: GA
Project Term: -
Program: OPEN 2018

Georgia Tech Research Corporation

Resilient, Cyber Secure Centralized Substation Protection

The Georgia Tech Research Corporation will design an autonomous, resilient and cyber-secure protection and control system for each power plant and substation on its grid. This will eliminate complex coordinated protection settings and transform the protection practice into a simpler, intelligent, automated and transparent process. The technology will integrate protective relays into an intelligent protection scheme that relies on existing high data redundancy in substations to (a) validate data; (b) detect hidden failures and in this case self-heal the protection and control system; (c)…


Status: ACTIVE
State: GA
Project Term: -
Program: OPEN 2018

Georgia Tech Research Corporation

High Power Density Compact Drive Integrated Motor for Electric Transportation

The Georgia Tech Research Corporation (GTRC) will develop a new approach to internally cool permanent magnet motors. The technology could dramatically improve electric motors’ power density and reduce system size and weight. To do so, the team will integrate motor and drive electronics into a unique system packaging incorporating an embedded advanced thermal management system. They will also develop wide bandgap power electronics packaging to enable high power density operations at higher temperature. The new design could substantially increase the power and torque density above the state of…


Status: ACTIVE
State: GA
Project Term: -
Program: PERFORM

Georgia Tech Research Corporation

Risk-Aware Market Clearing for Power Systems (RAMC)

The increasing use of renewable energy resources challenges grid operations, which have traditionally relied on highly predictable load and generation. Future grid operators must balance generation costs and system-level risk, shifting from deterministic to stochastic optimization and risk management. Georgia Tech’s Risk-Aware Market Clearing (RAMC) project will provide a blueprint for an end-to-end, data-driven approach where risk is explicitly modeled, quantified, and optimized, striking a tradeoff between cost and system-level risk minimization. The RAMC project focuses on challenges…


Status: ALUMNI
State: GA
Project Term: -
Program: REBELS

Georgia Tech Research Corporation

Fuel Cell Tailored for Efficient Utilization of Methane

Georgia Tech Research Corporation is developing a fuel cell that operates at temperatures less than 500°C by integrating nanostructured materials into all cell components. This is a departure from traditional fuel cells that operate at much lower or much higher temperatures. By developing multifunctional anodes that can efficiently reform and directly process methane, this fuel cell will allow for efficient use of methane. Additionally, the Georgia Tech team will develop nanocomposite electrolytes to reduce cell temperature without sacrificing system performance. These technological advances…


Status: ALUMNI
State: GA
Project Term: -
Program: TRANSNET

Georgia Tech Research Corporation

Network Performance Monitoring and Distributed Simulation

Researchers with the Georgia Tech Research Corporation will combine real-time analysis of transportation network data with distributed simulation modeling to provide drivers with information and incentives to reduce energy consumption. The team’s system model will use three sources of data to simulate the transportation network of the Atlanta metro area. The Georgia Department of Transportation’s intelligent transportation system (ITS) data repository, hosted at Georgia Tech, will provide 20-second, lane-specific operations data while team partner, AirSage, will provide highway speeds…


Status: ACTIVE
State: GA
Project Term: -
Program: Special Projects

Georgia Tech Research Corporation

Wind-Driven Direct Air Capture System Using 3D Printed, Passive, Amine-Loaded Contactors

Georgia Institute of Technology aims to develop a simple, scalable, and modular device that can remove CO2 from the atmosphere. The device will be designed such that ambient wind is sufficient to contact the CO2-laden air with the materials that filter CO2 out. The filtered CO2 will then be concentrated using localized electric heating, which allows the device to be easily deployed and integrated with renewables or the existing electrical grid. The proposed technology is driven solely by electricity with only two moving parts (a damper and a vacuum pump), which dramatically simplifies scale-…


Status: ALUMNI
State: MA
Project Term: -
Program: REFUEL

Giner

Anion Exchange Membrane Ammonia Production

Giner will develop advanced membrane and catalysts electrolyzer components that can electrochemically generate ammonia using water, nitrogen and intermittent renewable energy sources. Their electrochemical reactor operates at a much lower pressure and temperature than conventional methods, which can lead to significant energy savings. Some of their key innovations include metal nitride catalysts and high temperature poly(aryl piperidinium) anion exchange membranes (AEM) to boost the ammonia production rate and enhance process stability. The components will be integrated into Giner's…


Status: CANCELLED
State: MA
Project Term: -
Program: Electrofuels

Ginkgo Bioworks

Biofuels from E. Coli

Ginkgo Bioworks is bypassing photosynthesis and engineering E. coli to directly use carbon dioxide (CO2) to produce biofuels. E. coli doesn't naturally metabolize CO2, but Ginkgo Bioworks is manipulating and incorporating the genes responsible for CO2 metabolism into the microorganism. By genetically modifying E. coli, Ginkgo Bioworks will enhance its rate of CO2 consumption and liquid fuel production. Ginkgo Bioworks is delivering CO2 to E. coli as formic acid, a simple industrial chemical that provides energy and CO2 to the bacterial system.


Status: ALUMNI
State: CA
Project Term: -
Program: MOSAIC

Glint Photonics

Stationary Wide-Angle Concentrator PV System

Glint Photonics in collaboration with the National Renewable Energy Laboratory (NREL), will develop a stationary wide-angle concentrator (SWAC) PV system. The SWAC concentrates light onto multi-junction solar cells, which efficiently convert sunlight into electrical energy. A sheet of arrayed PV cells moves passively within the module to maximize sunlight capture throughout the day. Two innovations allow this tracking to occur smoothly and without the expense or complexity of an active control system or a mechanical tracker. First, a fluidic suspension mechanism enables nearly frictionless…


Status: ALUMNI
State: CA
Project Term: -
Program: OPEN 2012

Glint Photonics

Self-Tracking Concentrator Photovoltaics

Glint Photonics is developing an inexpensive solar concentrating PV (CPV) module that tracks the sun’s position over the course of the day to channel sunlight into PV materials more efficiently. Conventional solar concentrator technology requires complex moving parts to track the sun’s movements. In contrast, Glint’s inexpensive design can be mounted in a stationary configuration and adjusts its properties automatically in response to the solar position. By embedding this automated tracking function within the concentrator, Glint’s design enables CPV modules to use traditional mounting…


Status: ALUMNI
State: MA
Project Term: -
Program: REMOTE

GreenLight Biosciences

Cell-Free Bioconversion of Natural Gas

GreenLight Biosciences is developing a cell-free bioreactor that can convert large quantities of methane to fuel in one step. This technology integrates biological and chemical processes into a single process by separating and concentrating the biocatalysts from the host microorganisms. This unique “cell-free” approach is anticipated to improve the productivity of the reactor without increasing cost. GreenLight’s system can be erected onsite without the need for massive, costly equipment. The process uses natural gas and wellhead pressure to generate the power needed to run the facility. Any…


Status: ALUMNI
State: MI
Project Term: -
Program: IDEAS

Grid Logic

Nanostructured Core/Shell Powders for Magnets

The Grid Logic team is adapting a form of vapor deposition technology to demonstrate a new approach to creating powerful hybrid magnets. This “physical vapor deposition particle encapsulation technology” utilizes an inert atmosphere chamber, which allows for precisely controlled and reproducible pressure, gas flow, and fluidization conditions for a powder vessel. The team will use this specialized chamber to fabricate nanostructured exchange-spring magnets, which require careful control of material dimension and composition. Nanostructured exchange-spring magnets are composite magnetic…