Displaying 301 - 350 of 945

Status: ACTIVE
State: WI
Project Term: -
Program: CIRCUITS

Imagen Energy

Inverter for High Speed PMSM

Imagen Energy will develop a silicon carbide (SiC)-based compact motor drive system to efficiently control high-power (greater than 500 kW) permanent magnet electric motors operating at extremely high speed (greater than 20,000 rpm). Imagen’s design will address a major roadblock in operating electric motors at high speed, namely overcoming large back electromotive forces (BEMF). Their solution hopes to maximize the capabilities of the SiC technology and associated digital control platform, thereby bringing the overall drive system performance parameters to levels unachievable by current Si-…


Status: CANCELLED
State: CA
Project Term: -
Program: METALS

iMetalx Group

Advanced Electrowinning of Titanium

iMetalx is scaling up an advanced electrochemical process to produce low-cost titanium from domestic ore. While titanium is a versatile and robust structural metal, its widespread adoption for consumer applications has been limited due to its high cost of production. iMetalx is developing an new electrochemical titanium production process that avoids the cyclical formation of undesired titanium ions, thus significantly increasing the electrical current efficiency. iMetalx will test different cell designs, reduce unwanted side reactions to increase energy efficiency, and minimize the heat…


Status: ACTIVE
State: CA
Project Term: -
Program: CIRCUITS

Infineon Technologies

GaN HEMT Gate Driver Integrated Circuit

Infineon Technologies will develop a new, low-cost integrated circuit (IC) gate driver specifically for use with gallium nitride (GaN) high electron mobility transistor (HEMT) switches. The GaN HEMT switches would be used as a component for controlling variable speed electric motors in variable speed drives (VSDs). Electric motors, which account for about 40% of U.S. electricity consumption, can be made substantially more efficient by replacing constant speed motors with variable speed motors. Most VSDs today use silicon-based semiconductors, which are limited in performance compared to…


Status: ALUMNI
State: MA
Project Term: -
Program: METALS

INFINIUM

Aluminum Production Using Zirconia Solid Electrolyte

INFINIUM is developing a technology to produce light metals such as aluminum and titanium using an electrochemical cell design that could reduce energy consumption associated with these processes by over 50%. The key component of this innovation lies within the anode assembly used to electrochemically refine these light metals from their ores. While traditional processes use costly graphite anodes that are reacted to produce CO2 during refining, INFINIUM’s anode can use much cheaper fuels such as natural gas, and produce a high-purity oxygen by-product. Revenue from this by-product could…


Status: CANCELLED
State: MA
Project Term: -
Program: OPEN 2015

INFINIUM

Low-Energy Magnesium Recycling

INFINIUM will convert low-grade magnesium scrap into material of sufficient purity for motor vehicle components by a novel high-efficiency process using less than 1 kWh/kg magnesium product. Other magnesium purification technologies such as distillation and electrorefining use 5-10 kWh/kg, and primary production uses 40-100 kWh/kg. This is also a high-speed continuous process, with much lower labor and capital costs than other batch purification technologies. This technology could enable cost-effective recycling of magnesium, converting low-grade scrap metal into high-purity magnesium at low…


Status: CANCELLED
State: OH
Project Term: -
Program: OPEN 2009

Inorganic Specialists

Long-Range Li-Ion Batteries for Electric Vehicles

Inorganic Specialists’ project consists of material and manufacturing development for a new type of Li-Ion battery material, a silicon-coated paper. Silicon-based batteries are advantageous due to silicon’s ability to store large amounts of energy. Yet, the technology has not been able to withstand multiple charge/discharge cycles. The thinner the silicon-based material, the better it can handle multiple charge/discharge cycles. Inorganic Specialists’ extremely thin silicon-coated paper can store 4 times more energy than existing Li-Ion batteries. The team is improving manufacturing…


Status: ALUMNI
State: WA
Project Term: -
Program: OPEN 2012

Integral Consulting

Measuring Real-Time Wave Data with Ocean Wave Buoy

Integral Consulting is developing a cost-effective ocean wave buoy system that will accurately measure its own movements as it follows the surface wave motions of the ocean and relay this real-time wave data. Conventional real-time wave measurement buoys are expensive, which limits the ability to deploy large networks of buoys. Data from Integral Consulting’s buoys can be used as input to control strategies of wave energy conversion (WEC) devices and allow these controlled WECs to capture significantly more energy than systems that do not employ control strategies. Integral Consulting’s…


Status: ACTIVE
State: LA
Project Term: -
Program: HITEMMP

International Mezzo Technologies

A 2-5 MW Supercritical CO2 micro tube recuperator: manufacturing, testing, and laser weld qualification

International Mezzo Technologies will design, manufacture, and test a compact, nickel-based superalloy supercritical carbon dioxide (sCO2) recuperator (a type of heat exchanger). The recuperator will incorporate laser-welded micro tubes and function at 800°C (1,472°F) and 275 bar (3,989 psi). Currently, the cost of recuperators for power systems operating in these conditions is prohibitive. Laser welding micro tubes offers a low-cost approach to fabricating heat exchangers, which could increase the economic competitiveness of sCO2 power cycles. Mezzo’s program could provide a pathway to…


Status: ALUMNI
State: MI
Project Term: -
Program: IDEAS

Inventev

Transmission-Based Power Generator

Inventev is developing a proof-of-concept for a commercially viable generator system that is integrated with a truck transmission. The project will involve the design and fabrication of transmission and power electronics subsystems, integration of those systems into a Ford F550 chassis-cab truck, and conversion of the standard gasoline engine to a low-pressure natural gas engine. The project aims to create a 120kW low-cost, low-emission mobile power generator using natural gas with a cost target of 6-to-7 cents per kilowatt-hour. Of particular significance is the ability to use the same…


Status: ACTIVE
State: MA
Project Term: -
Program: IONICS

Ionic Materials

Novel Polymer Electrolyte

Ionic Materials will develop a lithium metal (not lithium ion) rechargeable battery cell that employs a novel solid polymer electrolyte that enables the world’s first truly safe lithium metal rechargeable battery cell. Scientists at the City University of New York have found that Ionic Material’s proprietary ionic conducting polymer is the most highly lithium conducting solid state polymer material ever measured (at room temperature). This polymer has high ionic conductivity across a range of temperatures, can be reliably extruded into very thin films, is non-flammable, has attractive…


Status: ACTIVE
State: MA
Project Term: -
Program: OPEN 2018

Ionic Materials

Novel Polymer-Enabled Rechargeable Aluminum-Alkaline Battery Technology

Ionic Materials will develop a more energy dense (by volume and mass) rechargeable battery based on an aluminum-alkaline chemistry. At the center of Ionic Materials’ innovation is a new polymer-based material that suppresses the formation of undesired chemical products that prevent aluminum-alkaline batteries from recharging. Aluminum is a highly abundant natural resource and costs much less than cobalt, nickel, and lithium, key elements in today’s state-of-the-art batteries. Aluminum-alkaline chemistries are also inherently safer than LIBs, making them more appropriate for use in electric…


Status: ACTIVE
State: IA
Project Term: -
Program: DIFFERENTIATE

Iowa State University (ISU)

Context-Aware Learning for Inverse Design in Photovoltaics

Iowa State University will develop novel machine learning tools to accelerate the inverse design of new microstructures in photovoltaics. The team will create a new deep generative model called bi-directional inverse design networks to combat challenges in real-world inverse design problems. The proposed inverse design tools, if successful, will produce novel, manufacturable material microstructures with improved electromagnetic properties relative to existing technology for better, more efficient solar energy.


Status: ALUMNI
State: IA
Project Term: -
Program: IDEAS

Iowa State University (ISU)

Catalytic Autothermal Pyrolysis

Iowa State University (ISU) will develop a catalytic autothermal pyrolysis (CAP) process for the production of aromatics and olefins that refiners blend into transportation fuels. Pyrolysis is the decomposition of substances by heating - the same process used to render wood into charcoal, caramelize sugar, and dry roast coffee beans. Traditionally, energy for pyrolysis is provided through indirect heat exchange, employing high temperature heat exchangers within reactors or conveying hot solids into reactors with the feedstock. This approach complicates the design and operation of reactors…


Status: ALUMNI
State: IA
Project Term: -
Program: IONICS

Iowa State University (ISU)

Glassy Solid Electrolytes

Iowa State University (ISU) will develop new lithium-ion-conducting glassy solid electrolytes to address the shortcomings of present-day lithium batteries. The electrolytes will have high ionic conductivities and excellent mechanical, thermal, chemical, and electrochemical properties. Because glasses lack grain boundaries, they will also be impermeable to lithium dendrites, branchlike metal fibers that can short-circuit battery cells. These glassy solid electrolytes can enhance the safety, performance, manufacturability, and cost of lithium batteries. In addition to the electrolyte…


Status: CANCELLED
State: IA
Project Term: -
Program: OPEN 2009

Iowa State University (ISU)

Optimized Breeding of Microalgae for Biofuels

Iowa State University (ISU) is genetically engineering a species of aquatic microalgae called Chlamydomonas for more energy efficient conversion of sunlight and carbon dioxide to biofuels. Current microalgae genetic technologies are imprecise and hinder the rapid engineering of a variety of desirable traits into Chlamydomonas. In the absence of genetic engineering, it remains unlikely that current microalgae technologies for biofuel production will be able to economically compete with traditional fossil fuels. ISU is developing a portfolio of technologies for rapid genetic modification and…


Status: CANCELLED
State: IA
Project Term: -
Program: OPEN 2015

Iowa State University (ISU)

Low-Cost, Robust Battery

The team led by Iowa State University (ISU) will develop an All Solid-State Sodium Battery (ASSSB) that will have a high energy content, can easily be recycled, and rely on highly abundant and extremely low cost starting materials. Commercially available sodium-based batteries operate at elevated temperatures, which decreases the efficiency and safety of the system. The team seeks to improve all three of the main components of a sodium-based battery: the anode, cathode, and electrolyte separator. The team’s anode is a porous carbon nanotube layer that will serve as a framework on which sodium…


Status: ALUMNI
State: IA
Project Term: -
Program: ROOTS

Iowa State University (ISU)

Soil Sensors for Nitrogen Use Efficiency

Iowa State University (ISU) will develop new sensors that measure the amount of nitrogen in soils and plants multiple times per day throughout the growing season. Nitrogen fertilizer is the largest energy input to U.S. corn production. However, its use is inefficient due to a lack of low-cost, effective nitrogen sensors. Year-to-year variation in nitrogen mineralization, due to differences in soil water and temperature, creates tremendous uncertainty about the proper fertilizer input and can cause farmers to over-apply. As a result, nitrogen fertilizer is lost from croplands to the…


Status: ACTIVE
State: IA
Project Term: -
Program: SENSOR

Iowa State University (ISU)

Testing & Validation of Occupancy Recognition Technologies

Iowa State University (ISU) will develop a comprehensive testing protocol and simulation tools to evaluate the energy savings and reliability of occupancy recognition sensor technologies for commercial and residential buildings. A barrier to wide adoption of new occupancy sensors is the lack of rigorous and widely accepted methodologies for evaluating the energy savings and reliability of occupancy recognition of these systems. To address this need, ISU’s protocols will allow them to determine occupancy recognition, sensor effectiveness, and reliability in both laboratory and real-world…


Status: ALUMNI
State: NM
Project Term: -
Program: SHIELD

IR Dynamics

Dynamic IR Window Film

IR Dynamics will develop a low-cost nanomaterial technology to be incorporated into flexible window films that will improve thermal insulation and solar heat gain. The team’s nanomaterial will incorporate two materials. First, low-cost nanosheets will increase thermal resistance. Second, a new type of nanomaterial will allow heat, in the form of infrared radiation (IR) from the sun, to pass through the window when it is cold outside, helping to warm the room in cold weather. When it is hot outside, the material will block the solar IR from passing through the window and warming the interior.…


Status: ALUMNI
State: CO
Project Term: -
Program: GRIDS

ITN Energy Systems

Advanced Vanadium Redox Flow Battery

ITN Energy Systems is developing a vanadium redox flow battery for residential and small-scale commercial energy storage that would be more efficient and affordable than today’s best energy storage systems. In a redox flow battery, chemical reactions occur that allow the battery to absorb or deliver electricity. Unlike conventional batteries, flow batteries use a liquid (also known as an electrolyte) to store energy; the more electrolyte that is used, the longer the battery can operate. Vanadium electrolyte-based redox flow battery systems are a technology for today’s market, but they require…


Status: ALUMNI
State: CO
Project Term: -
Program: OPEN 2009

ITN Energy Systems

Electrochromic Film for More Efficient Windows

ITN Energy Systems is addressing the high cost of electrochromic windows with a new manufacturing process: roll-to-roll deposition of the film onto flexible plastic surfaces. Production of electrochromic films on plastic requires low processing temperatures and uniform film quality over large surface areas. ITN is overcoming these challenges using its previous experience in growing flexible thin-film solar cells and batteries. By developing sensor-based controls, ITN's roll-to-roll manufacturing process yields more film over a larger area than traditional film deposition methods.…


Status: ALUMNI
State: CA
Project Term: -
Program: RANGE

Jet Propulsion Laboratory (JPL)

Metal Hydride-Air Battery

NASA’s Jet Propulsion Laboratory (JPL) is developing a new metal-hydride/air battery. Current electric vehicle batteries use costly components and require packaging and shielding to ensure safety. To address this, JPL’s technology will incorporate safe, inexpensive, and high-capacity materials for both the positive and negative electrodes of the battery as part of a novel design. Additionally, JPL’s design will use a membrane developed to prevent water loss and CO2 entry within the battery. High power performance and decreased costs will be possible with the use of a single catalyst material…


Status: ALUMNI
State: MD
Project Term: -
Program: IDEAS

Johns Hopkins University

Carbon Fiber from Methane

Johns Hopkins University will develop and assess components of a self-powered system to convert methane (the main component in natural gas) into carbon fiber. Methane can be separated into carbon and hydrogen, or burned for energy. The team will develop processes to use methane both to power the system and serve as carbon feedstock in a four stage system. First, methane is decomposed into hydrogen and carbon, and combined into a carbon/metal aggregate. Second, the carbon/metal aggregate is melted, producing a liquid melt containing carbon dissolved within it. Third, the melt is solidified…


Status: ALUMNI
State: MD
Project Term: -
Program: IDEAS

Johns Hopkins University

Adsorption Compression on Chemical Reactions

Johns Hopkins University will study the adsorption compression phenomenon for ways to enhance the reaction rate for commercially relevant reactions. Adsorption is the adhesion of molecules from a gas, liquid, or dissolved solid to a surface, creating layers of the “adsorbate” on the surface of the host material. The Johns Hopkins team will explore the physical state where the forces acting parallel to the surface of adsorbate molecules can in certain conditions be far higher than forces associated with adsorption of additional molecules on the surface. This phenomenon is called adsorption…


Status: ACTIVE
State: MD
Project Term: -
Program: OPEN 2018

Johns Hopkins University

Carbon Dioxide-Free Hydrogen and Solid Carbon from Natural Gas via Metal Salt Intermediates

Johns Hopkins will scale up a novel process to convert natural gas into hydrogen and solid carbon with no water input while reducing carbon dioxide (CO2) emissions. Leveraging industrial partners Southern Company and Cabot Corporation, the team will scale up its cyclic process based on early laboratory demonstration. ETCH, INC, is commercializing the process, which is expected to produce H2 from NG at costs comparable to the state-of-the art commercial technologies, while lowering energy input, reducing CO2 emissions, and producing high-value pure carbon materials.


Status: ACTIVE
State: MD
Project Term: -
Program: Special Projects

Johns Hopkins University

Electrothermal Conversion of Methane into Hydrogen and High-Value Carbon Fibers

Johns Hopkins University aims to develop an energy-efficient, scalable approach to convert methane into hydrogen and valuable graphitized carbon fibers (GCFs).The team will design an electrothermal reactor to pyrolyze (decompose) methane into hydrogen and low-quality carbon products, such as graphite particles, which will then be spun and heated to GCFs. These high-quality fibers can be used for construction material applications. The fully electrified manufacturing processes will be highly scalable, and built to accommodate various feedstocks and intermittent renewable energy sources.…


Status: ACTIVE
State: NY
Project Term: -
Program: PNDIODES

JR2J

Laser Spike Annealing for Dopant Activation

Advanced doping methods are required to realize the potential of gallium nitride (GaN)-based devices for future high efficiency, high power applications. Ion implantation is a doping process used in other semiconductor materials such as Si and GaAs but has been difficult to use in GaN due to the limited ability to perform a damage recovery anneal in GaN. JR2J will develop an innovative laser spike annealing technique to activate implanted dopants in GaN. Laser spike annealing is a high-temperature (above 1300 ºC) heat treatment technique that activates the dopants in GaN and repairs damage…


Status: ACTIVE
State: MA
Project Term: -
Program: DIFFERENTIATE

Julia Computing

Accelerating Coupled HVAC/Building Simulation with a Neural Component Architecture

Julia Computing, Inc. will develop a neural component machine learning tool to reduce the total energy consumption of heating, ventilation, and air conditioning (HVAC) systems in buildings. As of 2012, buildings consume 40 percent of the nation’s primary energy, with HVAC systems comprising a significant portion of this consumption. It has been demonstrated that the use of modeling and simulation tools in the design of a building can yield significant energy savings—up to 27 percent of total energy consumption. However, these simulation tools are still too slow to be practically useful. Julia…


Status: CANCELLED
State: CA
Project Term: -
Program: OPEN 2009

Kohana Technologies

Dynamically Adjustable Wind Turbine Blades

Kohana Technologies is developing wind turbines with a control system that delivers compressed air from special slots located in the surface of its blades. The compressed air dynamically adjusts the aerodynamic performance of the blades, and can essentially be used to control lift, drag, and ultimately power. This control system has been shown to exhibit high levels of control in combination with an exceptionally fast response rate. The deployment of such a control system in modern wind turbines would lead to better management of the load on the system during peak usage, allowing larger…


Status: CANCELLED
State: NC
Project Term: -
Program: SWITCHES

Kyma Technologies

GaN Substrate Technology

Kyma Technologies will develop a cost-effective technique to grow high-quality gallium nitride (GaN) seeds into GaN crystal boules, which are used as the starting material for a number of semiconductor devices. Currently, growing boules from GaN seeds is a slow, expensive, and inconsistent process, so it yields expensive electronic devices of varying quality. Kyma will select the highest quality GaN seeds and use a proprietary hydride vapor phase epitaxy growth process to rapidly grow the seeds into boules while preserving the seed’s structural quality and improving its purity.


Status: ALUMNI
State: IL
Project Term: -
Program: REMOTE

LanzaTech

Bioreactor with Improved Methane Transfer

LanzaTech will combine methane fermentation expertise, experimental bioreactor characterization, as well as advanced simulation and modeling to develop a novel gas fermentation system that can significantly improve gas to liquid mass transfer, or the rate at which methane gas is delivered to a biocatalyst. This unique bioreactor concept seeks to efficiently transfer methane to microbial biocatalysts by reducing the energy demand required for high transfer rates. Although methane is a flammable gas, the new technology also maintains the safe operation necessary for a small-scale conversion…


Status: ALUMNI
State: CA
Project Term: -
Program: ALPHA

Lawrence Berkeley National Laboratory (LBNL)

MEMS Based Drivers For Fusion

LBNL, in coordination with Cornell University, will develop a driver for magneto-inertial fusion based on ion beam technology that can be manufactured with low-cost, scalable methods. Ion beams are commonly used in research laboratories and manufacturing, but currently available technology cannot deliver the required beam intensities at low enough cost to drive an economical fusion reactor. LBNL will take advantage of microelectromechanical (MEMS) technology to develop a design consisting of thousands of mini ion “beamlets” densely packed on silicon wafers – up to thousands of beamlets per 4…


Status: ACTIVE
State: CA
Project Term: -
Program: DIFFERENTIATE

Lawrence Berkeley National Laboratory (LBNL)

Deep Learning and Natural Language Processing for Accelerated Inverse Design of Optical Metamaterials

Over the past 50 years, progress in optical metamaterial device design has led to the manipulation of light over a wide range of wavelengths spanning the ultraviolet to the far infrared, resulting in technological advancements such as selective radiative absorbers for solar energy and daytime passive cooling using deep space. Further advances in optical metamaterial devices could enable increased energy efficiency, reduced national primary energy consumption, inexpensive long duration energy storage, and next generation solid-state heat engines. Lawrence Berkley National Laboratory (LBNL)…


Status: ALUMNI
State: CA
Project Term: -
Program: Electrofuels

Lawrence Berkeley National Laboratory (LBNL)

Turning Bacteria into Biofuel

Lawrence Berkeley National Laboratory (LBNL) is improving the natural ability of a common soil bacteria called Ralstonia eutropha to use hydrogen and carbon dioxide for biofuel production. First, LBNL is genetically modifying the bacteria to produce biofuel at higher concentrations. Then, LBNL is using renewable electricity obtained from solar, wind, or wave power to produce high amounts of hydrogen in the presence of the bacteria—increasing the organism's access to its energy source and improving the efficiency of the biofuel-creation process. Finally, LBNL is tethering electrocatalysts…


Status: ALUMNI
State: CA
Project Term: -
Program: GRIDS

Lawrence Berkeley National Laboratory (LBNL)

Hydrogen-Bromine Flow Battery

Lawrence Berkeley National Laboratory (LBNL) is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer, and cost less than today's lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine…


Status: ALUMNI
State: CA
Project Term: -
Program: IDEAS

Lawrence Berkeley National Laboratory (LBNL)

Metal-Supported SOFC for Vehicles

Lawrence Berkeley National Laboratory (LBNL) will develop a high power density, rapid-start, metal-supported solid oxide fuel cell (MS-SOFC), as part of a fuel cell hybrid vehicle system that would use liquid bio-ethanol fuel. In this concept, the SOFC would accept hydrogen fuel derived from on-board processing of the bio-ethanol and air, producing electricity to charge an on-board battery and operate the motor. The project aims to develop and demonstrate cell-level MS-SOFC technology providing unprecedented high power density and rapid start capability initially using hydrogen and simulated…


Status: ACTIVE
State: CA
Project Term: -
Program: OPEN 2018

Lawrence Berkeley National Laboratory (LBNL)

Metal-Supported SOFCs for Ethanol-Fueled Vehicles

Lawrence Berkeley National Laboratory (LBNL) is developing a metal-supported SOFC (MS-SOFC) stack that produces electricity from an ethanol-water blend at high efficiency and energy density. This technology will enable light- to medium-duty hybrid passenger EVs to operate at a long range, with higher efficiency than gasoline vehicles and lower greenhouse gas (GHG) emissions than current vehicles. LBNL’s MS-SOFCs are mechanically rugged: they can heat from room temperature to their approximately 700°C (1292 °F) operating temperature within a few minutes without cracking and tolerate rapid…


Status: ACTIVE
State: CA
Project Term: -
Program: OPEN 2018

Lawrence Berkeley National Laboratory (LBNL)

MEMS RF Accelerators For Nuclear Energy and Advanced Manufacturing

LBNL will use advanced microfabrication technology to build and scale low-cost, compact, higher-power multi-beam ion accelerators. These accelerators will be able to increase the ion current up to 100 times, helping to enable a new learning curve for compact accelerator technology. MEMS (micro-electro mechanical systems) technology enables massively parallel, low-cost batch fabrication of ion beam accelerators. The team proposes to scale ion accelerators based on MEMS to higher beam power and pack hundreds to thousands of ion beamlets on silicon wafers. Ions will be injected and accelerated…


Status: ALUMNI
State: CA
Project Term: -
Program: PETRO

Lawrence Berkeley National Laboratory (LBNL)

Oil from Tobacco Leaves

Lawrence Berkeley National Laboratory (LBNL) is modifying tobacco to enable it to directly produce fuel molecules in its leaves for use as a biofuel. Tobacco is a good crop for biofuels production because it is an outstanding biomass crop, has a long history of cultivation, does not compete with the national food supply, and is highly responsive to genetic manipulation. LBNL will incorporate traits for hydrocarbon biosynthesis from cyanobacteria and algae, and enhance light utilization and carbon uptake in tobacco, improving the efficiency of photosynthesis so more fuel can be produced in the…


Status: ALUMNI
State: CA
Project Term: -
Program: REMOTE

Lawrence Berkeley National Laboratory (LBNL)

Enzymes for Methane Conversion

Lawrence Berkeley National Laboratory (LBNL) is genetically engineering a bacterium called Methylococcus in order to produce an enzyme that binds methane with a common fuel precursor to create a liquid fuel. This process relies on methylation, a reaction that requires no oxygen or energy inputs but has never been applied to methane conversion.” First, LBNL will construct a unique enzyme called a “PEP methylase” from an existing enzyme. The team will then bioengineer new metabolic pathways for assimilating methane and conversion to liquid fuels.


Status: ACTIVE
State: CA
Project Term: -
Program: ROOTS

Lawrence Berkeley National Laboratory (LBNL)

Imaging and Modeling Toolbox for Roots

Lawrence Berkeley National Laboratory (LBNL) will develop an imaging-modeling toolbox to aid in the development of more efficient crops at field scales. The approach is based on a root phenotyping method called Tomographic Electrical Rhizosphere Imaging (TERI). TERI works by applying a small electrical signal to a plant, then measuring the impedance responses through the roots and correlating those responses to root and soil properties. Key target traits of the LBNL project include root mass, root surface area, rooting depth, root distribution in soil, and soil moisture content and texture.…


Status: ACTIVE
State: CA
Project Term: -
Program: ROOTS

Lawrence Berkeley National Laboratory (LBNL)

Associated Particle Imaging for Soil Carbon

Lawrence Berkeley National Laboratory (LBNL) will develop a field-deployable instrument that can measure the distribution of carbon in soil using neutron scattering techniques. The system will use the Associated Particle Imaging (API) technique to determine the three-dimensional carbon distribution with a spatial resolution on the order of several centimeters. A compact, portable neutron generator emits neutrons that excite carbon and other nuclei. The excited carbon isotopes emit gamma rays that can be detected above the ground with spectroscopic detectors and used as a proxy to estimate the…


Status: ALUMNI
State: CA
Project Term: -
Program: AMPED

Lawrence Livermore National Laboratory (LLNL)

Wireless Sensor System for Battery Packs

Lawrence Livermore National Laboratory (LLNL) is developing a wireless sensor system to improve the safety and reliability of lithium-ion (Li-Ion) battery systems by monitoring key operating parameters of Li-Ion cells and battery packs. This system can be used to control battery operation and provide early indicators of battery failure. LLNL's design will monitor every cell within a large Li-Ion battery pack without the need for large bundles of cables to carry sensor signals to the battery management system. This wireless sensor network will dramatically reduce system cost, improve…


Status: ALUMNI
State: CA
Project Term: -
Program: IMPACCT

Lawrence Livermore National Laboratory (LLNL)

Synthetic Catalysts for CO2 Storage

Lawrence Livermore National Laboratory (LLNL) is designing a process to pull CO2 out of the exhaust gas of coal-fired power plants so it can be transported, stored, or utilized elsewhere. Human lungs rely on an enzyme known as carbonic anhydrase to help separate CO2 from our blood and tissue as part of the normal breathing process. LLNL is designing a synthetic catalyst with the same function as this enzyme. The catalyst can be used to quickly capture CO2 from coal exhaust, just as the natural enzyme does in our lungs. LLNL is also developing a method of encapsulating chemical solvents in…


Status: ACTIVE
State: CA
Project Term: -
Program: PNDIODES

Lawrence Livermore National Laboratory (LLNL)

Magnesium Diffusion Doping of GaN

Livermore National Laboratory (LLNL) will advance GaN device processing knowledge to enable production of GaN devices with higher speed and power at a lower cost. Using a selective area p-type doping process to move the device architecture from a lateral to a vertical configuration makes the lower cost possible. LLNL has previously demonstrated solid-state diffusion of magnesium (Mg) into GaN at temperatures under 1000ºC through a Gallidation Assisted Impurity Diffusion (GAID) process. In the GAID process, an Mg source layer is deposited in contact with the GaN followed by a capping layer of…


Status: ACTIVE
State: CA
Project Term: -
Program: Special Projects

Lawrence Livermore National Laboratory (LLNL)

Absolute Neutron Rate Measurement and Non-thermal/Thermonuclear Fusion Differentiation

Design, build and operate a robust, portable neutron detection system that will serve as a powerful diagnostic tool in support of efforts to transform fusion energy. The tool’s design will allow for flexible, portable experimental setup, enabling it to provide effective diagnostic measurements at multiple fusion facilities.


Status: ACTIVE
State: CA
Project Term: -
Program: Special Projects

Lawrence Livermore National Laboratory (LLNL)

Next Generation High-temperature Optical Fibers

Develop a novel process for applying metallic coatings to optical fibers that will allow the fabrication of distributed optical sensors for high-temperature geothermal wells and explore quantum sensing techniques to dramatically increase sensitivities. This new optical technology will fill an important technology gap to enable distributed sensing in high-temperature enhanced geothermal system wells and help optimize production.


Status: ACTIVE
State: CA
Project Term: -
Program: Special Projects

Lawrence Livermore National Laboratory (LLNL)

A Portable Optical Thomson Scattering System

Implement an optical Thomson scattering diagnostic to help constrain the values of the electron density and temperature, as well as ion temperature. This approach could transform the understanding of the underlying physics of each fusion concept by providing local, time resolved measurements of plasma conditions.


Status: ACTIVE
State: DE
Project Term: -
Program: Special Projects

Lectrolyst

Transformation of Carbon Emissions to High-Value Products through a Two-Step Electrochemical Platform

Carbon dioxide utilization can help reduce carbon emissions, but gaps remain in the value chain from initial capture to high-value products. Lectrolyst LLC will develop an electrochemical platform centered on selective two-step conversion of CO2 to acetic acid and ethylene, to fill this need. Preliminary life cycle assessment and techno-economic analysis indicate ~200 million metric tons of CO2 emissions reduction when targeting these products at global scale while competing on a cost basis without considering carbon pricing. Development of this platform is intended to lead to full…


Status: ALUMNI
State: PA
Project Term: -
Program: OPEN 2009

Lehigh University

CO2 Capture Using Electric Fields

Two faculty members at Lehigh University created a new technique called supercapacitive swing adsorption (SSA) that uses electrical charges to encourage materials to capture and release CO2. Current CO2 capture methods include expensive processes that involve changes in temperature or pressure. Lehigh University's approach uses electric fields to improve the ability of inexpensive carbon sorbents to trap CO2. Because this process uses electric fields and not electric current, the overall energy consumption is projected to be much lower than conventional methods. Lehigh University is now…