Displaying 301 - 350 of 1054

Status: ALUMNI
State: MI
Project Term: -
Program: OPEN 2012

Grid Logic

High-Power Superconductors

Grid Logic is developing a new type of electrical superconductor that could significantly improve the performance (in $/kA-m) and lower the cost of high-power energy generation, transmission, and distribution. Grid Logic is using a new manufacturing technique to coat very fine particles of superconducting material with an extremely thin layer—less than 1/1,000 the width of a human hair—of a low-cost metal composite. This new manufacturing process is not only much simpler and more cost effective than the process used to make today’s state-of-the-art high-power superconductors, but also it…


Status: ALUMNI
State: CA
Project Term: -
Program: GRID DATA

GridBright

Power Systems Model Repository

GridBright and Utility Integration Solutions (UISOL, a GE Company) will develop a power systems model repository based on state-of-the-art open-source software. The models in this repository will be used to facilitate testing and adoption of new grid optimization and control algorithms. The repository will use field-proven open-source software and will be made publicly available in the first year of the project. Key features of the repository include an advanced search capability to support search and extraction of models based on key research characteristics, faster model upload and download…


Status: ACTIVE
State: CA
Project Term: -
Program: OPEN 2018

GridBright

Secure Grid Data Exchange Using Cryptography, Peer-to-Peer Networks, and Blockchain Ledgers

GridBright will develop a simple and secure solution for sharing grid-related data to improve grid efficiency, reliability, and resiliency in a manner that preserves security and integrity. GridBright will use the Agile development model to construct several proof-of-concept software pipelines, performing penetration and compromise testing and a quantitative evaluation of each against existing requirements. The solution will create a simpler secure grid data exchange process for the electric grid and utility industries.


Status: ALUMNI
State: CA
Project Term: -
Program: HEATS

Halotechnics

Molten Glass for Thermal Storage

Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal…


Status: ALUMNI
State: MA
Project Term: -
Program: Electrofuels

Harvard University

Fuel from Bacteria, CO2, Water, and Solar Energy

Harvard University is engineering a self-contained, scalable electrofuels production system that can directly generate liquid fuels from bacteria, carbon dioxide (CO2), water, and sunlight. Harvard is genetically engineering bacteria called Shewanella, so the bacteria can sit directly on electrical conductors and absorb electrical current. This current, which is powered by solar panels, gives the bacteria the energy they need to process CO2 into liquid fuels. The Harvard team pumps this CO2 into the system, in addition to water and other nutrients needed to grow the bacteria. Harvard is also…


Status: ALUMNI
State: MA
Project Term: -
Program: IDEAS

Harvard University

Transistor-less Power Supply Technology

Harvard University in partnership with Sandia National Laboratories will develop a transistor-less 16kW DC to DC converter boosting a 0.5kV DC input to 8kV that is scalable to 100kW. If successful, the transistor-less DC to DC converter could improve the performance of power electronics for electric vehicles, commercial power supplies, renewable energy systems, grid operations, and other applications. Converting DC to DC is a two-step process that traditionally uses fast-switching transistors to convert a DC input to an AC signal before the signal is rectified to a DC output. The Harvard and…


Status: ALUMNI
State: MA
Project Term: -
Program: IDEAS

Harvard University

Mining the Deep Sea for Microbial Ethano- and Propanogenesis

Harvard University will develop new methods to harness naturally occurring microbial communities for the biological production of ethane and propane. Strong indirect evidence suggests that ethane and propane are produced in the ocean by communities of benthic microorganisms in unique deep-sea sediments under specific conditions. The team will target the microbial communities in the ethane- and propane-rich hydrothermal sediments of the Guaymas Basin in the Gulf of California. During the project, the team will recover and characterize seafloor sediment from the basin with the goal of…


Status: ALUMNI
State: MA
Project Term: -
Program: OPEN 2012

Harvard University

Organic Flow Battery for Energy Storage

Harvard University is developing an innovative grid-scale flow battery to store electricity from renewable sources. Flow batteries store energy in external tanks instead of within the battery container, permitting larger amounts of stored energy at lower cost per kWh. Harvard is designing active material for a flow battery that uses small, inexpensive organic molecules in aqueous electrolyte. Relying on low-cost organic materials, Harvard’s innovative storage device concept would yield one or more systems that may be developed by their partner, Sustainable Innovations, LLC, into viable grid-…


Status: ACTIVE
State: MA
Project Term: -
Program: OPEN 2018

Harvard University

GaN NMR Spectrometer Integrated Circuits Towards Broadly Distributed On-line Monitoring and Management of Subsurface Oil/Gas Reservoirs and Downstream

Harvard University will develop a compact NMR system to provide detailed information on composition and environment in subsurface oil exploration and production. By building the electronics for the system with gallium-nitride-based integrated circuitry, the team seeks to greatly miniaturize the NMR system, reducing both the volume and weight by two orders of magnitude, and enabling it to withstand the high temperatures found in a deep drill hole. The proposed technology will place the majority of the essential NMR electronics on a single board. This will reduce the complexity and bulkiness of…


Status: ALUMNI
State: WA
Project Term: -
Program: ALPHA

Helion Energy

Compression of FRC Targets for Fusion

Helion Energy's team will develop a prototype device that will explore a potential low-cost path to fusion for a less expensive, simplified reactor design. In contrast to conventional designs, this prototype will be smaller than a semi-trailer – reducing cost and complexity. The smaller size is achieved by using new techniques to achieve the high temperatures and densities required for fusion. The research team will produce these conditions using field-reversed configuration (FRC) plasmas, a special form of plasma that may offer significant advantages for fusion research. FRC plasmas are…


Status: ACTIVE
State: CA
Project Term: -
Program: OPEN 2018

Hewlett Packard Labs

Ultra-Energy-Efficient Integrated DWDM Optical Interconnect

Hewlett Packard Labs will develop a low energy consumption, ultra-efficient, high-speed technology to transmit data as light in high-performance computing systems and data centers. The team will combine recent breakthroughs in low-cost laser manufacturing and ultra-efficient photonic tuning technology with their established platform. It will demonstrate a fully integrated optical transceiver capable of sending data faster than 1,000 gigabytes per second over 40 simultaneous channels, even in rigorous practical operating conditions with widely varying temperatures.


Status: ALUMNI
State: NC
Project Term: -
Program: OPEN 2012

HexaTech

Semiconductors that Improve Electricity Flow

HexaTech is developing new semiconductors for electrical switches that will more efficiently control the flow of electricity across high-voltage electrical lines. A switch helps control electricity: switching it on and off, converting it from one voltage to another, and converting it from an Alternating Current (A/C) to a Direct Current (D/C) and back. Most switches today use silicon or silicon-based semiconductors, which are not able to handle high voltages, fast switching speeds, or high operating temperatures. HexaTech has developed highest quality, single crystalline Aluminum Nitride (AlN…


Status: ALUMNI
State: NC
Project Term: -
Program: IDEAS

Hi Fidelity Genetics

Plant Root Phenotyping

Hi Fidelity Genetics will develop a low-cost device to measure the characteristics of plant roots and the environmental conditions that affect their development. Their device, called the "RootTracker," is a cylindrical, cage-like structure equipped with sensors on the rings of the cage. Before a seed is planted, farmers can push or twist the RootTracker directly into the soil. A seed is then planted at the top of the cage, allowing the plant to grow naturally while sensors accurately measure root density, growth angles, and growth rates, while having minimal impact on the growth of…


Status: ACTIVE
State: MD
Project Term: -
Program: Special Projects

HighT-Tech

Advanced Catalyst Manufacturing Enabled by Direct Joule Heating

Ammonia synthesis reactions, enabled by the Haber-Bosch process, account for approximately 3% of the world’s total energy use. HighT-Tech proposes a cascade reactor with a sequence of non- platinum group metals catalyst compositions tailored to a specific stage of the synthesis reaction. HighT-Tech’s novel, direct joule (electric current) heating process enables synthesizing high entropy alloy nanoparticles with various catalyst compositions. This method will produce ammonia synthesis catalysts that deliver more ammonia per pass and require significantly less capital cost and energy to…


Status: ACTIVE
State: VA
Project Term: -
Program: MEITNER

HolosGen

Transportable Modular Reactor

HolosGen is developing a transportable gas-cooled nuclear reactor with load following ability. The reactor concept is essentially a closed-loop jet engine (Brayton cycle) with the typical combustor replaced by a nuclear heat source. The nuclear heat source is comprised of multiple subcritical power modules (SPMs) that only produce power when they are positioned in close proximity, allowing sufficient neutron transfer to reach criticality (steady-state). The modules will be positioned using an exoskeletal structure with fast-actuation technologies currently employed by the aviation industry.…


Status: ACTIVE
State: AZ
Project Term: -
Program: ASCEND

Honeywell International

Advanced Electric Propulsion System (AEPS)

More information on this project is coming soon!


Status: ALUMNI
State: CA
Project Term: -
Program: ADEPT

HRL Laboratories

Compact, Interactive Electric Vehicle Charger

HRL Laboratories is using gallium nitride (GaN) semiconductors to create battery chargers for electric vehicles (EVs) that are more compact and efficient than traditional EV chargers. Reducing the size and weight of the battery charger is important because it would help improve the overall performance of the EV. GaN semiconductors process electricity faster than the silicon semiconductors used in most conventional EV battery chargers. These high-speed semiconductors can be paired with lighter-weight electrical circuit components, which helps decrease the overall weight of the EV battery…


Status: ALUMNI
State: CA
Project Term: -
Program: SWITCHES

HRL Laboratories

Vertical GaN Transistor

HRL Laboratories will develop a high-performance, low-cost, vertical gallium nitride (GaN) transistor that could displace the silicon transistor technologies used in most high-power switching applications today. GaN transistors can operate at higher temperatures, voltages, and currents than their silicon counterparts, but they are expensive to manufacture. HRL will combine innovations in semiconductor material growth, device fabrication, and circuit design to create its high-performance GaN vertical transistor at a competitive manufacturing cost.


Status: ACTIVE
State: OH
Project Term: -
Program: ASCEND

Hyper Tech Research Inc.

Cryo Thermal Management of High Power Density Motors and Drives

More information on this project is coming soon!


Status: ACTIVE
State: VA
Project Term: -
Program: Special Projects

HyperJet Fusion Corporation

Plasma Guns for Magnetized Fuel Targets for PJMIF

HyperJet Fusion is advancing a potentially faster and cheaper approach to fusion energy that would result in reduced energy emissions. In plasma jet driven magneto-inertial fusion (PJMIF), an array of discrete supersonic plasma jets is used to form a spherically imploding plasma liner, which then compresses a magnetized plasma target to fusion conditions. HyperJet Fusion has been developing the plasma guns required for an experimental demonstration of the plasma liner formation. The proposed project focuses on developing the magnetized plasma target. The concept could potentially introduce an…


Status: ALUMNI
State: NM
Project Term: -
Program: SWITCHES

iBeam Materials

GaN LEDs on Flexible Metal Foils

iBeam Materials is developing a scalable manufacturing method to produce low-cost gallium nitride (GaN) LED devices for use in solid-state lighting. iBeam Materials uses an ion-beam crystal-aligning process to create single-crystal-like templates on arbitrary substrates thereby eliminating the need for small rigid single-crystal substrates. This process is inexpensive, high-output, and allows for large-area deposition in particular on flexible metal foils. In using flexible substrates, in contrast to rigid single-crystal wafers, the ion-aligning process also enables roll-to-roll (R2R)…


Status: ACTIVE
State: NY
Project Term: -
Program: DIFFERENTIATE

IBM T.J. Watson Research Center

Model-based Reinforcement Learning with Active Learning for Efficient Electrical Power Converter Design

IBM Research will develop a reinforcement learning (RL)-based electrical power converter design tool. Such converters are widely used and critically important in many applications. Designing a specific converter is a lengthy and expensive process that involves multiple manual steps—selecting and configuring the correct components and topologies; evaluating the design performance via simulations; and iteratively optimizing the design while satisfying resource, technology, and cost constraints. In this project, the design problem will be formulated as mixed integer optimization to be…


Status: ALUMNI
State: NY
Project Term: -
Program: ENLITENED

IBM T.J. Watson Research Center

Optical Network using Photonic Switches

The IBM T.J. Watson Research Center will develop datacenter networking technology incorporating extremely fast switching devices that operate on the nanosecond scale. At the heart of the process is the development of a new type of photonic switch. The dominant switching technology today are electronic switches that toggle connections between two wires, each wire providing a different communication channel. A photonic switch toggles connections between two optical fibers, where each individual fiber themselves can carry many communication channels allowing immense numbers of data transfers.…


Status: ACTIVE
State: NY
Project Term: -
Program: ENLITENED

IBM T.J. Watson Research Center

Multi-Wavelength Optical Transceivers

IBM T.J. Watson Research Center will develop a two-pronged approach to improve future datacenter efficiency.. New optical interconnect solutions can provide a path to energy-efficient datacenters at higher bandwidth levels, but they must also meet key metrics including power density, cost, latency, reliability, and signal integrity. IBM's team will use their expertise with vertical-cavity surface-emitting lasers (VCSELs) to develop VCSEL-based optical interconnect technology capable of meeting the necessary future demands. VCSEL-based interconnects offer an appealing combination of low…


Status: ALUMNI
State: NY
Project Term: -
Program: MONITOR

IBM T.J. Watson Research Center

Multi-Modal Methane Measurement System

IBM’s T.J Watson Research Center is working in conjunction with Harvard University and Princeton University to develop an energy-efficient, self-organizing mesh network to gather data over a distributed methane measurement system. Data will be passed to a cloud-based analytics system using custom models to quantify the amount and rate of methane leakage. Additionally, IBM is developing new, low-cost optical sensors that will use tunable diode laser absorption spectroscopy (TDLAS) for methane detection. While today’s optical sensors offer excellent sensitivity and selectivity, their high cost…


Status: ACTIVE
State: ID
Project Term: -
Program: Special Projects

Idaho National Laboratory (INL)

Next-Generation Metal Fuel

INL and its partners are proposing a next generation metal fuel in support of a megawatt-scale compact fast reactor – being developed by Oklo Inc – that is uniquely sized for off-grid applications. The team seeks to develop a fuel with a demonstrated production process and validated performance that incorporates engineered porosity to absorb and retain produced gasses, allowing for higher operating temperatures, as well as a diffusion barrier between the fuel alloy and the cladding to avoid material degradation, which removes the need for the complicated-to-manufacture sodium bond between…


Status: ALUMNI
State: TX
Project Term: -
Program: Solar ADEPT

Ideal Power

Lightweight PV Inverters

PV inverters convert DC power generated by modules into usable AC power. Ideal Power's initial 30kW 94lb PV inverter reduces the weight of comparable 30kW PV inverters by 90%—reducing the cost of materials, manufacturing, shipping, and installation. With ARPA-E support, new bi-directional silicon power switches will be developed, commercialized, and utilized in Ideal Power's next-generation PV inverter. With these components, Ideal Power will produce 100kW inverters that weight less than 100lb., reducing the weight of conventional 3,000lb. 100kW inverters by more than 95%. The new…


Status: ACTIVE
State: IL
Project Term: -
Program: CIRCUITS

Illinois Institute of Technology (IIT)

Solid State Circuit Breakers for Microgrids

Illinois Institute of Technology (IIT) will develop autonomously operated, programmable, and intelligent bidirectional solid-state circuit breakers (SSCB) using transistors based on gallium nitride (GaN). Renewable power sources and other distributed energy resources feed electricity to the utility grid through interfacing power electronic converters, but the power converters cannot withstand a fault condition (abnormal electric current) for more than a few microseconds. Circuit faults cause either catastrophic destruction or protective shutdown of the converters, resulting in loss of power…


Status: CANCELLED
State: IL
Project Term: -
Program: RANGE

Illinois Institute of Technology (IIT)

Nanoelectrofuel Flow Battery for Electric Vehicles

Illinois Institute of Technology (IIT) is collaborating with Argonne National Laboratory to develop a rechargeable flow battery for EVs that uses a nanotechnology-based electrochemical liquid fuel that offers over 30 times the energy density of traditional electrolytes. Flow batteries, which store chemical energy in external tanks instead of within the battery container, are typically low in energy density and therefore not well suited for transportation. However, IIT’s flow battery uses a liquid electrolyte containing a large portion of nanoparticles to carry its charge; increases its energy…


Status: ACTIVE
State: WI
Project Term: -
Program: CIRCUITS

Imagen Energy

Inverter for High Speed PMSM

Imagen Energy will develop a silicon carbide (SiC)-based compact motor drive system to efficiently control high-power (greater than 500 kW) permanent magnet electric motors operating at extremely high speed (greater than 20,000 rpm). Imagen’s design will address a major roadblock in operating electric motors at high speed, namely overcoming large back electromotive forces (BEMF). Their solution hopes to maximize the capabilities of the SiC technology and associated digital control platform, thereby bringing the overall drive system performance parameters to levels unachievable by current Si-…


Status: CANCELLED
State: CA
Project Term: -
Program: METALS

iMetalx Group

Scaling up Titanium Production

iMetalx is scaling up an advanced electrochemical process to produce low-cost titanium from domestic ore. While titanium is a versatile and robust structural metal, its widespread adoption for consumer applications has been limited due to its high cost of production. iMetalx is developing an new electrochemical titanium production process that avoids the cyclical formation of undesired titanium ions, thus significantly increasing the electrical current efficiency. iMetalx will test different cell designs, reduce unwanted side reactions to increase energy efficiency, and minimize the heat…


Status: ACTIVE
State: CA
Project Term: -
Program: CIRCUITS

Infineon Technologies

GaN HEMT Gate Driver Integrated Circuit

Infineon Technologies will develop a new, low-cost integrated circuit (IC) gate driver specifically for use with gallium nitride (GaN) high electron mobility transistor (HEMT) switches. The GaN HEMT switches would be used as a component for controlling variable speed electric motors in variable speed drives (VSDs). Electric motors, which account for about 40% of U.S. electricity consumption, can be made substantially more efficient by replacing constant speed motors with variable speed motors. Most VSDs today use silicon-based semiconductors, which are limited in performance compared to…


Status: ALUMNI
State: MA
Project Term: -
Program: METALS

INFINIUM

Aluminum Production Using Zirconia Solid Electrolyte

INFINIUM is developing a technology to produce light metals such as aluminum and titanium using an electrochemical cell design that could reduce energy consumption associated with these processes by over 50%. The key component of this innovation lies within the anode assembly used to electrochemically refine these light metals from their ores. While traditional processes use costly graphite anodes that are reacted to produce CO2 during refining, INFINIUM’s anode can use much cheaper fuels such as natural gas, and produce a high-purity oxygen by-product. Revenue from this by-product could…


Status: CANCELLED
State: MA
Project Term: -
Program: OPEN 2015

INFINIUM

Low-Energy Magnesium Recycling

INFINIUM will convert low-grade magnesium scrap into material of sufficient purity for motor vehicle components by a novel high-efficiency process using less than 1 kWh/kg magnesium product. Other magnesium purification technologies such as distillation and electrorefining use 5-10 kWh/kg, and primary production uses 40-100 kWh/kg. This is also a high-speed continuous process, with much lower labor and capital costs than other batch purification technologies. This technology could enable cost-effective recycling of magnesium, converting low-grade scrap metal into high-purity magnesium at low…


Status: CANCELLED
State: OH
Project Term: -
Program: OPEN 2009

Inorganic Specialists

Long-Range Li-Ion Batteries for Electric Vehicles

Inorganic Specialists’ project consists of material and manufacturing development for a new type of Li-Ion battery material, a silicon-coated paper. Silicon-based batteries are advantageous due to silicon’s ability to store large amounts of energy. Yet, the technology has not been able to withstand multiple charge/discharge cycles. The thinner the silicon-based material, the better it can handle multiple charge/discharge cycles. Inorganic Specialists’ extremely thin silicon-coated paper can store 4 times more energy than existing Li-Ion batteries. The team is improving manufacturing…


Status: ALUMNI
State: WA
Project Term: -
Program: OPEN 2012

Integral Consulting

Measuring Real-Time Wave Data with Ocean Wave Buoy

Integral Consulting is developing a cost-effective ocean wave buoy system that will accurately measure its own movements as it follows the surface wave motions of the ocean and relay this real-time wave data. Conventional real-time wave measurement buoys are expensive, which limits the ability to deploy large networks of buoys. Data from Integral Consulting’s buoys can be used as input to control strategies of wave energy conversion (WEC) devices and allow these controlled WECs to capture significantly more energy than systems that do not employ control strategies. Integral Consulting’s…


Status: ACTIVE
State: LA
Project Term: -
Program: HITEMMP

International Mezzo Technologies

A 2-5 MW Supercritical CO2 Micro Tube Recuperator: Manufacturing, Testing, and Laser Weld Qualification

International Mezzo Technologies will design, manufacture, and test a compact, nickel-based superalloy supercritical carbon dioxide (sCO2) recuperator (a type of heat exchanger). The recuperator will incorporate laser-welded micro tubes and function at 800°C (1,472°F) and 275 bar (3,989 psi). Currently, the cost of recuperators for power systems operating in these conditions is prohibitive. Laser welding micro tubes offers a low-cost approach to fabricating heat exchangers, which could increase the economic competitiveness of sCO2 power cycles. Mezzo’s program could provide a pathway to…


Status: ALUMNI
State: MI
Project Term: -
Program: IDEAS

Inventev

Transmission-Based Power Generator

Inventev is developing a proof-of-concept for a commercially viable generator system that is integrated with a truck transmission. The project will involve the design and fabrication of transmission and power electronics subsystems, integration of those systems into a Ford F550 chassis-cab truck, and conversion of the standard gasoline engine to a low-pressure natural gas engine. The project aims to create a 120kW low-cost, low-emission mobile power generator using natural gas with a cost target of 6-to-7 cents per kilowatt-hour. Of particular significance is the ability to use the same…


Status: ACTIVE
State: MA
Project Term: -
Program: IONICS

Ionic Materials

Novel Polymer Electrolyte

Ionic Materials will develop a lithium metal (not lithium ion) rechargeable battery cell that employs a novel solid polymer electrolyte that enables the world’s first truly safe lithium metal rechargeable battery cell. Scientists at the City University of New York have found that Ionic Material’s proprietary ionic conducting polymer is the most highly lithium conducting solid state polymer material ever measured (at room temperature). This polymer has high ionic conductivity across a range of temperatures, can be reliably extruded into very thin films, is non-flammable, has attractive…


Status: ACTIVE
State: MA
Project Term: -
Program: OPEN 2018

Ionic Materials

Novel Polymer-Enabled Rechargeable Aluminum-Alkaline Battery Technology

Ionic Materials will develop a more energy dense (by volume and mass) rechargeable battery based on an aluminum-alkaline chemistry. At the center of Ionic Materials’ innovation is a new polymer-based material that suppresses the formation of undesired chemical products that prevent aluminum-alkaline batteries from recharging. Aluminum is a highly abundant natural resource and costs much less than cobalt, nickel, and lithium, key elements in today’s state-of-the-art batteries. Aluminum-alkaline chemistries are also inherently safer than LIBs, making them more appropriate for use in electric…


Status: ACTIVE
State: IA
Project Term: -
Program: DIFFERENTIATE

Iowa State University (ISU)

Context-Aware Learning for Inverse Design in Photovoltaics

Iowa State University will develop novel machine learning tools to accelerate the inverse design of new microstructures in photovoltaics. The team will create a new deep generative model called bi-directional inverse design networks to combat challenges in real-world inverse design problems. The proposed inverse design tools, if successful, will produce novel, manufacturable material microstructures with improved electromagnetic properties relative to existing technology for better, more efficient solar energy.


Status: ALUMNI
State: IA
Project Term: -
Program: IDEAS

Iowa State University (ISU)

Catalytic Autothermal Pyrolysis

Iowa State University (ISU) will develop a catalytic autothermal pyrolysis (CAP) process for the production of aromatics and olefins that refiners blend into transportation fuels. Pyrolysis is the decomposition of substances by heating - the same process used to render wood into charcoal, caramelize sugar, and dry roast coffee beans. Traditionally, energy for pyrolysis is provided through indirect heat exchange, employing high temperature heat exchangers within reactors or conveying hot solids into reactors with the feedstock. This approach complicates the design and operation of reactors…


Status: ALUMNI
State: IA
Project Term: -
Program: IONICS

Iowa State University (ISU)

Glassy Solid Electrolytes

Iowa State University (ISU) will develop new lithium-ion-conducting glassy solid electrolytes to address the shortcomings of present-day lithium batteries. The electrolytes will have high ionic conductivities and excellent mechanical, thermal, chemical, and electrochemical properties. Because glasses lack grain boundaries, they will also be impermeable to lithium dendrites, branchlike metal fibers that can short-circuit battery cells. These glassy solid electrolytes can enhance the safety, performance, manufacturability, and cost of lithium batteries. In addition to the electrolyte…


Status: CANCELLED
State: IA
Project Term: -
Program: OPEN 2009

Iowa State University (ISU)

Optimized Breeding of Microalgae for Biofuels

Iowa State University (ISU) is genetically engineering a species of aquatic microalgae called Chlamydomonas for more energy efficient conversion of sunlight and carbon dioxide to biofuels. Current microalgae genetic technologies are imprecise and hinder the rapid engineering of a variety of desirable traits into Chlamydomonas. In the absence of genetic engineering, it remains unlikely that current microalgae technologies for biofuel production will be able to economically compete with traditional fossil fuels. ISU is developing a portfolio of technologies for rapid genetic modification and…


Status: CANCELLED
State: IA
Project Term: -
Program: OPEN 2015

Iowa State University (ISU)

Low-Cost, Robust Battery

The team led by Iowa State University (ISU) will develop an All Solid-State Sodium Battery (ASSSB) that will have a high energy content, can easily be recycled, and rely on highly abundant and extremely low cost starting materials. Commercially available sodium-based batteries operate at elevated temperatures, which decreases the efficiency and safety of the system. The team seeks to improve all three of the main components of a sodium-based battery: the anode, cathode, and electrolyte separator. The team’s anode is a porous carbon nanotube layer that will serve as a framework on which sodium…


Status: ALUMNI
State: IA
Project Term: -
Program: ROOTS

Iowa State University (ISU)

Soil Sensors for Nitrogen Use Efficiency

Iowa State University (ISU) will develop new sensors that measure the amount of nitrogen in soils and plants multiple times per day throughout the growing season. Nitrogen fertilizer is the largest energy input to U.S. corn production. However, its use is inefficient due to a lack of low-cost, effective nitrogen sensors. Year-to-year variation in nitrogen mineralization, due to differences in soil water and temperature, creates tremendous uncertainty about the proper fertilizer input and can cause farmers to over-apply. As a result, nitrogen fertilizer is lost from croplands to the…


Status: CANCELLED
State: IA
Project Term: -
Program: SENSOR

Iowa State University (ISU)

Simulation, Challenge Testing & Validation of CO2 Technologies

Reliable, accurate CO2 measurement to inform building system operations can substantially benefit energy use in U.S. buildings. To meet this need, a demonstrated evaluation protocol is required to assess accuracy and reliability of CO2 sensing technologies across a number of influencing factors The Iowa State research team will develop comprehensive testing protocols and contribute to development of guidelines to assess the accuracy and reliability of CO2 sensing technologies being developed through the SENSOR program. The outputs of this project will also inform both the R&D and…


Status: ALUMNI
State: NM
Project Term: -
Program: SHIELD

IR Dynamics

Dynamic IR Window Film

IR Dynamics will develop a low-cost nanomaterial technology to be incorporated into flexible window films that will improve thermal insulation and solar heat gain. The team’s nanomaterial will incorporate two materials. First, low-cost nanosheets will increase thermal resistance. Second, a new type of nanomaterial will allow heat, in the form of infrared radiation (IR) from the sun, to pass through the window when it is cold outside, helping to warm the room in cold weather. When it is hot outside, the material will block the solar IR from passing through the window and warming the interior.…


Status: ALUMNI
State: CO
Project Term: -
Program: GRIDS

ITN Energy Systems

Advanced Vanadium Redox Flow Battery

ITN Energy Systems is developing a vanadium redox flow battery for residential and small-scale commercial energy storage that would be more efficient and affordable than today’s best energy storage systems. In a redox flow battery, chemical reactions occur that allow the battery to absorb or deliver electricity. Unlike conventional batteries, flow batteries use a liquid (also known as an electrolyte) to store energy; the more electrolyte that is used, the longer the battery can operate. Vanadium electrolyte-based redox flow battery systems are a technology for today’s market, but they require…


Status: ALUMNI
State: CO
Project Term: -
Program: OPEN 2009

ITN Energy Systems

Electrochromic Film for More Efficient Windows

ITN Energy Systems is addressing the high cost of electrochromic windows with a new manufacturing process: roll-to-roll deposition of the film onto flexible plastic surfaces. Production of electrochromic films on plastic requires low processing temperatures and uniform film quality over large surface areas. ITN is overcoming these challenges using its previous experience in growing flexible thin-film solar cells and batteries. By developing sensor-based controls, ITN's roll-to-roll manufacturing process yields more film over a larger area than traditional film deposition methods.…