Slick Sheet: Project
The National Renewable Energy Laboratory (NREL), Sandia National Laboratories, and the Georgia Institute of Technology will develop testing protocols to evaluate the cooling technologies developed by COOLERCHIPS projects in real data center operating conditions. The scale will range from the component level to the rack level and all the way up to full edge data centers.

Slick Sheet: Project
As part of a Category A project, HRL Laboratories will develop a novel data center thermal management system with low thermal resistance and greater energy efficiency to reduce power consumption for the next generation of data center servers. HRL’s system utilizes aligned graphite micro-fins and additively manufactured flow manifolds to overcome performance limitations common to existing cooling blocks and provide unprecedented cooling for current and future processors.

Slick Sheet: Project
Nvidia will develop a novel modular datacenter with an innovative cooling system that combines direct-to-chip, pumped two-phase and single-phase immersion in a rack manifold with built-in pumps and a liquid-vapor separator. The design cools chips with a two-phase cold plate, while the rest of the server components with lower power density will be submerged inside a hermetically sealed immersion sled with the servers cooled using green refrigerants for the twophase cooling and dielectric fluid for the immersion.

Slick Sheet: Project
The University of California, Davis, will develop a suite of holistic thermal management solutions for modular datacenters used for edge computing. Their design innovations include efficient heat extraction from CPU and GPU chips with a liquid cooled loop and dissipation of this heat to the ambient by use of high-efficiency, low-cost heat exchangers. Auxiliary electronics in the server boards would be cooled with a secondary loop that rejects heat radiatively to the atmosphere.

Slick Sheet: Project
The University of Maryland will develop an integrated decision support software tool for the design of next-generation data centers that seamlessly links the existing open-source software for modeling reliability, energy, carbon footprint, and cost with an innovative co-simulation framework. This tool will permit data center designers to develop transformational and disruptive design advances compared to existing state-of-the-art technologies.

Press Releases
 The U.S. Department of Energy (DOE) today announced $40 million in funding for 15 projects that will develop high-performance, energy efficient cooling solutions for data centers.

Slick Sheet: Project
Travertine will develop an innovative process that combines strong acid-enhanced weathering and critical metal concentration and recovery in ultramafic mine tailings with an electrolytic process for sulfuric acid recycling and base production. The process will maximize the release of carbon dioxide (CO2) reactive minerals and residual critical elements from mine tailings, while minimizing waste. Carbon dioxide will be captured from air and permanently sequestered as inert carbonate minerals. Leached critical elements will be recovered as oxides.

Slick Sheet: Project
Boeing Research & Technology aims to develop a comprehensive solution for ultra-high performance turbine blades and other extreme environment aerospace applications. The team will develop a series of novel refractory complex concentrated alloys (RCCA) and their processing parameters for both laser beam powder-bed-fusion/powder-feed-deposition additive manufacturing and advanced powder metallurgy manufacturing, as well as intermediate layer materials optimized for coating solutions.

Slick Sheet: Project
Cathode structure and surface morphology are thought to be essential for LENR reaction rate. Amphionic proposes to optimize cathode design to form Pd-polymeric composites within which the Pd nanoparticle size and shape are varied, and the interfacial separation and geometry are controlled. Experiments will focus on exploring if LENR are produced in potential wells existing between two nanoscale surfaces by controlling metal nanoparticle (NP) geometry, separation, composition, and deuterium loading.

Slick Sheet: Project
Massachusetts Institute of Technology (MIT) proposes a hypothesis-driven experimental campaign to examine prominent claims of low energy nuclear reactions (LENR) with nuclear and material diagnostics, focusing on unambiguous indicators of nuclear reactions such as emitted neutrons and nuclear ash with unnatural isotopic ratios. The team will develop an experimental platform that thoroughly and reproducibly test claims of nuclear anomalies in gas-loaded metal-hydrogen systems.