Slick Sheet: Project
SRI International will develop a highly efficient, wearable thermal regulation system that leverages the human body’s natural thermal regulation areas such as the palms of the hands, soles of feet, and upper facial area. This innovative “active textile” technology is enabled by a novel combination of low-cost electroactive and passive polymer materials and structures to efficiently manage heat transfer while being quiet and comfortable. SRI’s electronically controllable active textile technology is versatile - allowing the wearer to continue to use their existing wardrobe.

Slick Sheet: Project
Otherlab will develop thermally adaptive materials that change their thickness in response to temperature changes, allowing the creation of garments that passively respond to variations in temperature. In contrast to existing garments that have a constant insulation value whether conditions are hot or cold, thermally adaptive materials change shape as temperature changes, leading to a change in insulation. The material change is a physical response, passively operating and requiring no input from the wearer or any control system.

Slick Sheet: Project
The University of California, Berkeley (UC Berkeley) will team with WiTricity to develop and integrate highly resonant wireless power transfer technology to deliver efficient local thermal amenities to the feet, hands, face, and trunk of occupants in workstations. Until now, local comfort devices have had little market traction because they had to be tethered by a cord to a power source.

Slick Sheet: Project
The University of Maryland (UMD) will develop a robotic personal attendant providing improved comfort levels for individuals in inadequately heated/cooled environments. This mobile robotic platform will be fitted with a small, battery-powered, high-efficiency vapor compression heat pump and will be highly portable and able to follow an assigned person around during the course of the day, providing localized heating and/or cooling as needed while reducing the energy required to heat and cool buildings.

Slick Sheet: Project
Cornell University will develop thermoregulatory apparel that enables the expansion of the comfortable temperature range in buildings by more than 4°F in both heating and cooling seasons. Cornell’s thermoregulatory apparel integrates advanced textile technologies and state-of-the-art wearable electronics into a functional apparel design without compromising comfort, wearability, washability, appearance, or safety.

Slick Sheet: Project
Virginia Polytechnic Institute and State University (Virginia Tech) will develop a wide-bandgap-based, high power (100 kW) DC-to-AC inverter that can receive power from sources like batteries or solar panels and transfer it directly to the medium voltage level of the utility grid. The team will also integrate the device with an existing medium voltage AC-to-DC converter to build a bidirectional solid-state transformer that converts low-voltage AC to high-voltage AC without using heavy, low-frequency materials such as copper and iron in its design.

Slick Sheet: Project
Marquette University will develop a small, compact, lightweight, and efficient 1 MW battery charger for electric vehicles that will double the specific power and triple power density compared to the current state-of-the-art. The team aims to use MOSFET switches based on silicon carbide to ensure the device runs efficiently while handling very large amounts of power in a small package.

Slick Sheet: Project
Infineon Technologies will develop a new, low-cost integrated circuit (IC) gate driver specifically for use with gallium nitride (GaN) high electron mobility transistor (HEMT) switches. The GaN HEMT switches would be used as a component for controlling variable speed electric motors in variable speed drives (VSDs). Electric motors, which account for about 40% of U.S. electricity consumption, can be made substantially more efficient by replacing constant speed motors with variable speed motors.

Slick Sheet: Project
Imagen Energy will develop a silicon carbide (SiC)-based compact motor drive system to efficiently control high-power (greater than 500 kW) permanent magnet electric motors operating at extremely high speed (greater than 20,000 rpm). Imagen’s design will address a major roadblock in operating electric motors at high speed, namely overcoming large back electromotive forces (BEMF).

Slick Sheet: Project
Empower Semiconductor will develop a new architecture for regulating voltage in integrated circuits (IC) like computer microprocessors. Empower’s design will enable faster & more accurate power delivery than today’s power management hardware. As transistors continue to shrink, the number of transistors per chip has increased, resulting in increased computing power. Existing Voltage Regulator ICs (VRICs) have not kept pace and deliver excessive (and wasted) power to these advanced digital ICs.