Slick Sheet: Project
Colorado State University (CSU) will work with BASF and Cypris Materials to accelerate the technology first developed under a 2015 ARPA‐E OPEN award. They will transition the developed coating into an industrially scalable, sprayable process to retrofit energy inefficient windows with a heat-reflective, visibly transparent film. Under the original award, nanostructured coatings were shown to greatly improve the efficiency of single‐pane windows by lowering solar heat gain.

Slick Sheet: Project
The University of California, Berkeley (UC Berkeley) and Indoor Reality are developing a portable scanning system and the associated software to rapidly generate indoor thermal and physical building maps. This will allow for cost-effective identification of building inefficiencies and recommendation of energy-saving measures. The scanning system is contained in a backpack which an operator would wear while walking through a building along with a handheld scanner.

Slick Sheet: Project
The University of Texas at Austin (UT Austin) is developing low-cost coatings that control how light enters buildings through windows. By individually blocking infrared and visible components of sunlight, UT Austin’s design would allow building occupants to better control the amount of heat and the brightness of light that enters the structure, saving heating, cooling, and lighting costs. These coatings can be applied to windows using inexpensive techniques similar to spray-painting a car to keep the cost per window low.

Slick Sheet: Project
Stanford University is developing a device for the rooftops of buildings and cars that will reflect sunlight and emit heat, enabling passive cooling, even when the sun is shining. This device requires no electricity or fuel and would reduce the need for air conditioning, leading to energy and cost savings. Stanford’s technology relies on recently developed state-of-the-art concepts and techniques to tailor the absorption and emission of light and heat in nanostructured materials. This project could enable buildings, cars, and electronics to cool without using electric power.

Slick Sheet: Project
A team of researchers from more than 10 departments at Stanford University is collaborating to transform the way Americans interact with our energy-use data. The team built a web-based platform that collects historical electricity data, which it uses to perform a variety of experiments to learn what triggers people to respond. Experiments include new financial incentives, a calculator to understand the potential savings of efficient appliances, new Facebook interface designs, communication studies using Twitter, and educational programs with the Girl Scouts.

Slick Sheet: Project
ITN Energy Systems is addressing the high cost of electrochromic windows with a new manufacturing process: roll-to-roll deposition of the film onto flexible plastic surfaces. Production of electrochromic films on plastic requires low processing temperatures and uniform film quality over large surface areas. ITN is overcoming these challenges using its previous experience in growing flexible thin-film solar cells and batteries. By developing sensor-based controls, ITN's roll-to-roll manufacturing process yields more film over a larger area than traditional film deposition methods.

Slick Sheet: Project
Soraa's new GaN crystal growth method is adapted from that used to grow quartz crystals, which are very inexpensive and represent the second-largest market for single crystals for electronic applications (after silicon). More extreme conditions are required to grow GaN crystals and therefore a new type of chemical growth chamber was invented that is suitable for large-scale manufacturing. A new process was developed that grows GaN crystals at a rate that is more than double that of current processes.

Slick Sheet: Project
Signetron is developing a technology that will enable fast, cost effective, and accurate energy audits without the need for expensive, skilled labor to collect data manually. Signetron’s innovation integrates low-cost visible and infrared optical cameras into a handheld scanner with depth sensing. This enables the operator to capture indoor 3D maps of building geometry and energy-relevant features as they traverse a building. Captured data is uploaded to the cloud where it is analyzed by Signetron software to generate an energy model and provide actionable energy audit information.

Slick Sheet: Project
Northeastern University, in partnership with the Ames Laboratory, will evaluate a range of new magnetocaloric compounds (AlT2X2) for potential application in room-temperature magnetic cooling. Magnetic refrigeration is an environmentally friendly alternative to conventional vapor-compression cooling technology. The magnetocaloric effect is triggered by application and removal of an applied magnetic field—adjusting the magnetic field translates into an adjustment in the temperature of the material.

Slick Sheet: Project
Julia Computing, Inc. will develop a neural component machine learning tool to reduce the total energy consumption of heating, ventilation, and air conditioning (HVAC) systems in buildings. As of 2012, buildings consume 40 percent of the nation’s primary energy, with HVAC systems comprising a significant portion of this consumption. It has been demonstrated that the use of modeling and simulation tools in the design of a building can yield significant energy savings—up to 27 percent of total energy consumption. However, these simulation tools are still too slow to be practically useful.