Slick Sheet: Project
Columbia University (Columbia) will use innovative processes to enable increased domestic production of energy-relevant metals from CO2-reactive minerals at potentially lower costs than the state of the art. The work will focus on feedstocks from the Tamarack Project, leading to domestic production of nickel, copper, and cobalt and smaller amounts of platinum, palladium, and gold. Activities will leverage Columbia’s hydrometallurgical leach technologies for these minerals.

Slick Sheet: Project
Circe Bioscience is building a carbon-efficient precision fermentation platform to produce energy-rich long-chain carbon chemicals with applications in several industrial sectors including fuels, materials, and food. The Circe system has a high degree of feedstock flexibility allowing it to take advantage of the legacy bioeconomy for cheap sugar supply and of a growing green energy infrastructure for external reducing equivalents to achieve high carbon efficiency.

Slick Sheet: Project
The University of Illinois at Urbana-Champaign (UIUC) aims to eliminate ice/snow/frost accretion on stationary and mobile electrified systems by developing a multi-functional coating that synergistically combines two different ice/snow/frost removal mechanisms. The team will incorporate pulsed interfacial heating with controlled surface wettability to demonstrate a two orders of magnitude reduction in ice/snow/frost removal time with 50% lower energy consumption without bulk melting compared with state-of-the-art steady heating methods.

Slick Sheet: Project
Rio Tinto Services will collaborate with Columbia University, Pacific Northwest National Laboratory, Talon Nickel, Carbfix, and Advantek Waste Management Solutions to develop innovative technologies to potentially sequester CO2 based on the characterization, determination of reaction kinetics, and modeling of the Tamarack Nickel Project’s bowl-shaped ultramafic intrusion. This sequestration would be achieved via the conversion of CO2 into solid rock.

Slick Sheet: Project
The University of Wisconsin-Madison will produce carbon-negative concrete building components using cementitious materials generated by a carbon mineralization-based direct air capture (DAC) process. The DAC process uses a novel aqueous carbonation cycle to capture CO2 from the air at low cost. Simultaneously, the process upcycles industrial mineral wastes as cementitious materials by enhancing their pozzolanic reactivity (i.e. ability to form minerals that contribute to strength).

Slick Sheet: Project
Captura will demonstrate efficient CO2 stripping from oceanwater using low-cost thin film composite hollow fiber membranes. The team will use ultra-low-cost hollow fiber membranes, traditionally used in water filtration applications, as a structural support, and modify their outer layers with highly CO2 permeable polydimethylsiloxane layers to selectively strip CO2 from oceanwater. Captura will also employ a computational model-assisted design and rapidly prototype new gas liquid contactor designs that use counterflow and cross-flow design for efficient CO2 stripping from oceanwater.

Slick Sheet: Project
The Makai Ocean Engineering team will develop novel mooring and anchoring methods to reduce the costs of offshore renewable energy. Makai will enable grid-scale FOWT and MHK systems to be deployed in areas that would otherwise be inaccessible or too expensive with current mooring and anchoring technologies. At the center of this program is Makai’s Remote Anchoring and MicroPiling (RAMP) system, which can remotely install micropiles on the seafloor.

Slick Sheet: Project
The Massachusetts Institute of Technology (MIT) aims to develop a complete system to remove low-level methane from high-flow gaseous streams associated with coal mining. Because state-of-the-art mine ventilation air systems offer zero methane conversion, the system will be developed and tested on ventilation air methane. MIT’s design will include real-time input determination, output performance sensing, advanced machine learning algorithms, and feedback control for process optimization.

Slick Sheet: Project
Johnson Matthey, Oak Ridge National Laboratory, and Consol Energy will adapt the Catalytic Oxidation METhane (COMET™) methane abatement system to convert vent air methane at a Consol Energy coal mining site. The COMET methane system has shown potential for controlling dilute methane emissions. The team will use cost-effective technology to achieve over 99.5% methane conversion efficiency at temperatures below 1112 ºF for methane concentration in the range of 0.1-1.6%, representing nearly all ventilation air methane sources in the U.S.

Slick Sheet: Project
Cornell University will develop a scalable technology to co-utilize waste construction and demolition (C&D) residues and CO2 to produce sustainable construction materials via several closely integrated innovations in cement production.