Slick Sheet: Project
FuelCell Energy will develop an intermediate-temperature fuel cell that will directly convert methane to methanol and other liquid fuels using advanced metal catalysts. Existing fuel cell technologies typically convert chemical energy from hydrogen into electricity during a chemical reaction with oxygen or some other agent. FuelCell Energy’s cell would create liquid fuel from natural gas. Their advanced catalysts are optimized to improve the yield and selectivity of methane-to-methanol reactions; this efficiency provides the ability to run a fuel cell on methane instead of hydrogen.

Slick Sheet: Project
ANL is developing a new hybrid fuel cell technology that could generate both electricity and liquid fuels from natural gas. Existing fuel cell technologies typically convert chemical energy from hydrogen into electricity during a chemical reaction with oxygen or some other agent. In addition to generating electricity from hydrogen, ANL’s fuel cell would produce ethylene—a liquid fuel precursor—from natural gas.

Slick Sheet: Project
The Colorado School of Mines is developing a mixed proton and oxygen ion conducting electrolyte that will allow a fuel cell to operate at temperatures less than 500°C. By using a proton and oxygen ion electrolyte, the fuel cell stack is able to reduce coking – which clogs anodes with carbon deposits – and enhance the process of turning hydrocarbon fuels into hydrogen. Today’s ceramic fuel cells are based on oxygen-ion conducting electrolytes and operate at high temperatures.

Slick Sheet: Project
Creare, in partnership with IMBY Energy, is developing a mass-manufacturable, recuperated, closed-loop Brayton-cycle microturbine that will provide 5 kW of electrical power for residential and commercial buildings. The waste heat from the device can be harvested for heating. Technical innovations in the system that are anticipated to enable high efficiency at an attractive cost include a diffusion bonded foil recuperator, a turbomachine with specialized hydrodynamic gas bearings, a binary working fluid mixture and flameless combustion.

Slick Sheet: Project
The Ocean Renewable Power Company (ORPC) will develop an innovative, self-deploying MHK power system, which will reduce the operating costs and improve the efficiency of MHK systems by up to 50%. ORPC’s system is based on pitch control of the blades of a cross-flow turbine, in which the tidal flow passes across the turbine blades rather than in a radial fashion. This system will allow the turbine to self-propel itself to the deployment location, and lower itself to the sea floor remotely.

Slick Sheet: Project
The team led by RedWave Energy will develop a waste heat harvesting system, called a rectenna, that converts low-temperature waste heat into electricity. Rectennas are nanoantennas that convert radiant energy to direct current (DC) electricity. The rectennas are fabricated onto sheets of flexible material in tightly packed arrays and placed near key heat sources such as the turbine's condenser, heat exchanger, and flue gas cooling stack. Heat radiates onto the nanoantennas and energizes electrons on the antennas’ surface. These electrons are rectified by the system, resulting in DC power.

Slick Sheet: Project
This project team, led by the National Renewable Energy Laboratory (NREL), will employ hydride vapor phase epitaxy (HVPE), a fast growth technique used to produce semiconductors, to lower the manufacturing cost of multijunction solar cells. Additionally the team will develop new materials to be used in the HVPE process, enabling a chemical liftoff method that allows reuse of substrates. The chemical liftoff will mitigate costs of substrates, further reducing the overall system cost.

Slick Sheet: Project
Otherlab is developing an inexpensive small mirror system with an innovative drive system to reflect sunlight onto concentrating solar power towers at greatly reduced cost. This system is an alternative to expensive and bulky 20-30 foot tall mirrors and expensive sun-tracking drives used in today’s concentrating solar power plants. In order for solar power tower plants to compete with conventional electricity generation, these plants need dramatic component cost reductions and lower maintenance and operational expenses.

Slick Sheet: Project
Integral Consulting is developing a cost-effective ocean wave buoy system that will accurately measure its own movements as it follows the surface wave motions of the ocean and relay this real-time wave data. Conventional real-time wave measurement buoys are expensive, which limits the ability to deploy large networks of buoys. Data from Integral Consulting’s buoys can be used as input to control strategies of wave energy conversion (WEC) devices and allow these controlled WECs to capture significantly more energy than systems that do not employ control strategies.

Slick Sheet: Project
MicroLink Devices is developing low-cost, high-efficiency solar cells to capture concentrated sunlight in an effort to increase the amount of electricity generated by concentrating solar power plants. The continued growth of the CPV market depends strongly on continuing to reduce the cost of CPV solar cell technologies. MicroLink will make an all-lattice-matched solar cell that can achieve greater power conversion efficiency than conventional CPV technologies, thereby reducing the cost of generating electricity.