Slick Sheet: Project
Harvard University will develop new methods to harness naturally occurring microbial communities for the biological production of ethane and propane. Strong indirect evidence suggests that ethane and propane are produced in the ocean by communities of benthic microorganisms in unique deep-sea sediments under specific conditions. The team will target the microbial communities in the ethane- and propane-rich hydrothermal sediments of the Guaymas Basin in the Gulf of California.

Slick Sheet: Project
The team at the California Institute of Technology (Caltech) has developed a method to determine the mechanical properties of lithium as a function of size, temperature, and microstructure. The body of scientific knowledge on these properties and the way dendrites form and grow is very limited, in part due to the reactivity of metallic lithium with components of air such as water and carbon dioxide. The team proposes to conduct a targeted investigation on the properties of electrodeposited lithium metal in commercial thin-film solid-state batteries.

Slick Sheet: Project
Johns Hopkins University will study the adsorption compression phenomenon for ways to enhance the reaction rate for commercially relevant reactions. Adsorption is the adhesion of molecules from a gas, liquid, or dissolved solid to a surface, creating layers of the “adsorbate” on the surface of the host material. The Johns Hopkins team will explore the physical state where the forces acting parallel to the surface of adsorbate molecules can in certain conditions be far higher than forces associated with adsorption of additional molecules on the surface.

Slick Sheet: Project
Georgia Tech Research Corporation will develop hollow fiber membranes containing metal-organic framework (MOF) thin films to separate propylene from propane. The nanoporous MOF film is supported on the inside surfaces of the tubular polymeric hollow fibers. Chemicals introduced into the center of the tube are separated through the MOF membrane by a molecular sieving process. Traditional olefin production processes are performed at pressures up to 20 bar, requiring large energy and capital costs.

Slick Sheet: Project
Iowa State University (ISU) will develop a catalytic autothermal pyrolysis (CAP) process for the production of aromatics and olefins that refiners blend into transportation fuels. Pyrolysis is the decomposition of substances by heating - the same process used to render wood into charcoal, caramelize sugar, and dry roast coffee beans. Traditionally, energy for pyrolysis is provided through indirect heat exchange, employing high temperature heat exchangers within reactors or conveying hot solids into reactors with the feedstock.

Slick Sheet: Project
Inventev is developing a proof-of-concept for a commercially viable generator system that is integrated with a truck transmission. The project will involve the design and fabrication of transmission and power electronics subsystems, integration of those systems into a Ford F550 chassis-cab truck, and conversion of the standard gasoline engine to a low-pressure natural gas engine. The project aims to create a 120kW low-cost, low-emission mobile power generator using natural gas with a cost target of 6-to-7 cents per kilowatt-hour.

Slick Sheet: Project
Hi Fidelity Genetics will develop a low-cost device to measure the characteristics of plant roots and the environmental conditions that affect their development. Their device, called the "RootTracker," is a cylindrical, cage-like structure equipped with sensors on the rings of the cage. Before a seed is planted, farmers can push or twist the RootTracker directly into the soil. A seed is then planted at the top of the cage, allowing the plant to grow naturally while sensors accurately measure root density, growth angles, and growth rates, while having minimal impact on the growth of the plant.

Slick Sheet: Project
Gas Technology Institute (GTI) will develop a sulfur-based methane oxidation process, known as soft oxidation, to convert methane into liquid fuels and chemicals. Current gas-to-liquid technology for converting methane to liquid hydrocarbons requires massive scale to achieve economic production. The large plant size makes this approach unsuitable to address the challenge of distributed methane emissions. Soft oxidation is a method better suited to address this challenge because of its modular nature.

Slick Sheet: Project
The Citrine Informatics team is demonstrating a proof-of-concept for a system that would use experimental work to intelligently guide the investigation of new solid ionic conductor materials. If successful, the project will create a new approach to material discovery generally and new direction for developing promising ionic conductors specifically.

Slick Sheet: Project
Rice University will develop a first of its kind biocatalyst to synthesize ammonia from small–scale isolated methane sources. The microorganisms will be engineered to maximize simultaneous diazotrophic and methanotrophic capabilities. Diazotrophs are organisms that can fix nitrogen gas in the air into a biologically usable form, such as ammonia. Methanotrophs are organisms that metabolize and use methane as an energy and carbon source. Rice University’s technology will combine these capabilities, and develop a one-step ammonia synthesis that will operate at low temperature and pressure.